Style changes for pcg_random to keep my CI from yelling at me.
continuous-integration/drone/push Build is passing Details

This commit is contained in:
Deukhoofd 2020-05-26 13:24:40 +02:00
parent 779ddd49e3
commit e599bc730f
Signed by: Deukhoofd
GPG Key ID: ADF2E9256009EDCE
2 changed files with 863 additions and 1331 deletions

472
extern/pcg_extras.hpp vendored
View File

@ -33,17 +33,17 @@
#ifndef PCG_EXTRAS_HPP_INCLUDED #ifndef PCG_EXTRAS_HPP_INCLUDED
#define PCG_EXTRAS_HPP_INCLUDED 1 #define PCG_EXTRAS_HPP_INCLUDED 1
#include <cassert>
#include <cinttypes> #include <cinttypes>
#include <cstddef> #include <cstddef>
#include <cstdlib> #include <cstdlib>
#include <cstring> #include <cstring>
#include <cassert>
#include <limits>
#include <iostream> #include <iostream>
#include <iterator>
#include <limits>
#include <locale>
#include <type_traits> #include <type_traits>
#include <utility> #include <utility>
#include <locale>
#include <iterator>
#ifdef __GNUC__ #ifdef __GNUC__
#include <cxxabi.h> #include <cxxabi.h>
@ -78,28 +78,25 @@
namespace pcg_extras { namespace pcg_extras {
typedef __uint128_t pcg128_t; typedef __uint128_t pcg128_t;
} }
#define PCG_128BIT_CONSTANT(high,low) \ #define PCG_128BIT_CONSTANT(high, low) ((pcg_extras::pcg128_t(high) << 64) + low)
((pcg_extras::pcg128_t(high) << 64) + low)
#else #else
#include "pcg_uint128.hpp" #include "pcg_uint128.hpp"
namespace pcg_extras { namespace pcg_extras {
typedef pcg_extras::uint_x4<uint32_t,uint64_t> pcg128_t; typedef pcg_extras::uint_x4<uint32_t, uint64_t> pcg128_t;
} }
#define PCG_128BIT_CONSTANT(high,low) \ #define PCG_128BIT_CONSTANT(high, low) pcg_extras::pcg128_t(high, low)
pcg_extras::pcg128_t(high,low) #define PCG_EMULATED_128BIT_MATH 1
#define PCG_EMULATED_128BIT_MATH 1
#endif #endif
namespace pcg_extras { namespace pcg_extras {
/* /*
* We often need to represent a "number of bits". When used normally, these * We often need to represent a "number of bits". When used normally, these
* numbers are never greater than 128, so an unsigned char is plenty. * numbers are never greater than 128, so an unsigned char is plenty.
* If you're using a nonstandard generator of a larger size, you can set * If you're using a nonstandard generator of a larger size, you can set
* PCG_BITCOUNT_T to have it define it as a larger size. (Some compilers * PCG_BITCOUNT_T to have it define it as a larger size. (Some compilers
* might produce faster code if you set it to an unsigned int.) * might produce faster code if you set it to an unsigned int.)
*/ */
#ifndef PCG_BITCOUNT_T #ifndef PCG_BITCOUNT_T
typedef uint8_t bitcount_t; typedef uint8_t bitcount_t;
@ -107,25 +104,23 @@ namespace pcg_extras {
typedef PCG_BITCOUNT_T bitcount_t; typedef PCG_BITCOUNT_T bitcount_t;
#endif #endif
/* /*
* C++ requires us to be able to serialize RNG state by printing or reading * C++ requires us to be able to serialize RNG state by printing or reading
* it from a stream. Because we use 128-bit ints, we also need to be able * it from a stream. Because we use 128-bit ints, we also need to be able
* ot print them, so here is code to do so. * ot print them, so here is code to do so.
* *
* This code provides enough functionality to print 128-bit ints in decimal * This code provides enough functionality to print 128-bit ints in decimal
* and zero-padded in hex. It's not a full-featured implementation. * and zero-padded in hex. It's not a full-featured implementation.
*/ */
template <typename CharT, typename Traits> template <typename CharT, typename Traits>
std::basic_ostream<CharT,Traits>& std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& out, pcg128_t value) {
operator<<(std::basic_ostream<CharT,Traits>& out, pcg128_t value)
{
auto desired_base = out.flags() & out.basefield; auto desired_base = out.flags() & out.basefield;
bool want_hex = desired_base == out.hex; bool want_hex = desired_base == out.hex;
if (want_hex) { if (want_hex) {
uint64_t highpart = uint64_t(value >> 64); uint64_t highpart = uint64_t(value >> 64);
uint64_t lowpart = uint64_t(value); uint64_t lowpart = uint64_t(value);
auto desired_width = out.width(); auto desired_width = out.width();
if (desired_width > 16) { if (desired_width > 16) {
out.width(desired_width - 16); out.width(desired_width - 16);
@ -148,7 +143,7 @@ namespace pcg_extras {
constexpr size_t MAX_CHARS_128BIT = 40; constexpr size_t MAX_CHARS_128BIT = 40;
char buffer[MAX_CHARS_128BIT]; char buffer[MAX_CHARS_128BIT];
char* pos = buffer+sizeof(buffer); char* pos = buffer + sizeof(buffer);
*(--pos) = '\0'; *(--pos) = '\0';
constexpr auto BASE = pcg128_t(10ULL); constexpr auto BASE = pcg128_t(10ULL);
do { do {
@ -156,15 +151,13 @@ namespace pcg_extras {
auto mod = uint32_t(value - (div * BASE)); auto mod = uint32_t(value - (div * BASE));
*(--pos) = '0' + char(mod); *(--pos) = '0' + char(mod);
value = div; value = div;
} while(value != pcg128_t(0ULL)); } while (value != pcg128_t(0ULL));
return out << pos; return out << pos;
} }
template <typename CharT, typename Traits> template <typename CharT, typename Traits>
std::basic_istream<CharT,Traits>& std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& in, pcg128_t& value) {
operator>>(std::basic_istream<CharT,Traits>& in, pcg128_t& value) typename std::basic_istream<CharT, Traits>::sentry s(in);
{
typename std::basic_istream<CharT,Traits>::sentry s(in);
if (!s) if (!s)
return in; return in;
@ -173,7 +166,7 @@ namespace pcg_extras {
pcg128_t current(0ULL); pcg128_t current(0ULL);
bool did_nothing = true; bool did_nothing = true;
bool overflow = false; bool overflow = false;
for(;;) { for (;;) {
CharT wide_ch = in.get(); CharT wide_ch = in.get();
if (!in.good()) if (!in.good())
break; break;
@ -184,7 +177,7 @@ namespace pcg_extras {
} }
did_nothing = false; did_nothing = false;
pcg128_t digit(uint32_t(ch - '0')); pcg128_t digit(uint32_t(ch - '0'));
pcg128_t timesbase = current*BASE; pcg128_t timesbase = current * BASE;
overflow = overflow || timesbase < current; overflow = overflow || timesbase < current;
current = timesbase + digit; current = timesbase + digit;
overflow = overflow || current < digit; overflow = overflow || current < digit;
@ -201,24 +194,20 @@ namespace pcg_extras {
return in; return in;
} }
/* /*
* Likewise, if people use tiny rngs, we'll be serializing uint8_t. * Likewise, if people use tiny rngs, we'll be serializing uint8_t.
* If we just used the provided IO operators, they'd read/write chars, * If we just used the provided IO operators, they'd read/write chars,
* not ints, so we need to define our own. We *can* redefine this operator * not ints, so we need to define our own. We *can* redefine this operator
* here because we're in our own namespace. * here because we're in our own namespace.
*/ */
template <typename CharT, typename Traits> template <typename CharT, typename Traits>
std::basic_ostream<CharT,Traits>& std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& out, uint8_t value) {
operator<<(std::basic_ostream<CharT,Traits>&out, uint8_t value)
{
return out << uint32_t(value); return out << uint32_t(value);
} }
template <typename CharT, typename Traits> template <typename CharT, typename Traits>
std::basic_istream<CharT,Traits>& std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& in, uint8_t& target) {
operator>>(std::basic_istream<CharT,Traits>& in, uint8_t& target)
{
uint32_t value = 0xdecea5edU; uint32_t value = 0xdecea5edU;
in >> value; in >> value;
if (!in && value == 0xdecea5edU) if (!in && value == 0xdecea5edU)
@ -231,40 +220,34 @@ namespace pcg_extras {
return in; return in;
} }
/* Unfortunately, the above functions don't get found in preference to the /* Unfortunately, the above functions don't get found in preference to the
* built in ones, so we create some more specific overloads that will. * built in ones, so we create some more specific overloads that will.
* Ugh. * Ugh.
*/ */
inline std::ostream& operator<<(std::ostream& out, uint8_t value) inline std::ostream& operator<<(std::ostream& out, uint8_t value) {
{ return pcg_extras::operator<<<char>(out, value);
return pcg_extras::operator<< <char>(out, value);
} }
inline std::istream& operator>>(std::istream& in, uint8_t& value) inline std::istream& operator>>(std::istream& in, uint8_t& value) {
{ return pcg_extras::operator>><char>(in, value);
return pcg_extras::operator>> <char>(in, value);
} }
/*
* Useful bitwise operations.
*/
/*
* XorShifts are invertable, but they are someting of a pain to invert.
* This function backs them out. It's used by the whacky "inside out"
* generator defined later.
*/
/* template <typename itype> inline itype unxorshift(itype x, bitcount_t bits, bitcount_t shift) {
* Useful bitwise operations. if (2 * shift >= bits) {
*/
/*
* XorShifts are invertable, but they are someting of a pain to invert.
* This function backs them out. It's used by the whacky "inside out"
* generator defined later.
*/
template <typename itype>
inline itype unxorshift(itype x, bitcount_t bits, bitcount_t shift)
{
if (2*shift >= bits) {
return x ^ (x >> shift); return x ^ (x >> shift);
} }
itype lowmask1 = (itype(1U) << (bits - shift*2)) - 1; itype lowmask1 = (itype(1U) << (bits - shift * 2)) - 1;
itype highmask1 = ~lowmask1; itype highmask1 = ~lowmask1;
itype top1 = x; itype top1 = x;
itype bottom1 = x & lowmask1; itype bottom1 = x & lowmask1;
@ -278,36 +261,32 @@ namespace pcg_extras {
return top1 | bottom2; return top1 | bottom2;
} }
/* /*
* Rotate left and right. * Rotate left and right.
* *
* In ideal world, compilers would spot idiomatic rotate code and convert it * In ideal world, compilers would spot idiomatic rotate code and convert it
* to a rotate instruction. Of course, opinions vary on what the correct * to a rotate instruction. Of course, opinions vary on what the correct
* idiom is and how to spot it. For clang, sometimes it generates better * idiom is and how to spot it. For clang, sometimes it generates better
* (but still crappy) code if you define PCG_USE_ZEROCHECK_ROTATE_IDIOM. * (but still crappy) code if you define PCG_USE_ZEROCHECK_ROTATE_IDIOM.
*/ */
template <typename itype> template <typename itype> inline itype rotl(itype value, bitcount_t rot) {
inline itype rotl(itype value, bitcount_t rot)
{
constexpr bitcount_t bits = sizeof(itype) * 8; constexpr bitcount_t bits = sizeof(itype) * 8;
constexpr bitcount_t mask = bits - 1; constexpr bitcount_t mask = bits - 1;
#if PCG_USE_ZEROCHECK_ROTATE_IDIOM #if PCG_USE_ZEROCHECK_ROTATE_IDIOM
return rot ? (value << rot) | (value >> (bits - rot)) : value; return rot ? (value << rot) | (value >> (bits - rot)) : value;
#else #else
return (value << rot) | (value >> ((- rot) & mask)); return (value << rot) | (value >> ((-rot) & mask));
#endif #endif
} }
template <typename itype> template <typename itype> inline itype rotr(itype value, bitcount_t rot) {
inline itype rotr(itype value, bitcount_t rot)
{
constexpr bitcount_t bits = sizeof(itype) * 8; constexpr bitcount_t bits = sizeof(itype) * 8;
constexpr bitcount_t mask = bits - 1; constexpr bitcount_t mask = bits - 1;
#if PCG_USE_ZEROCHECK_ROTATE_IDIOM #if PCG_USE_ZEROCHECK_ROTATE_IDIOM
return rot ? (value >> rot) | (value << (bits - rot)) : value; return rot ? (value >> rot) | (value << (bits - rot)) : value;
#else #else
return (value >> rot) | (value << ((- rot) & mask)); return (value >> rot) | (value << ((-rot) & mask));
#endif #endif
} }
@ -318,32 +297,28 @@ namespace pcg_extras {
* *
* These overloads will be preferred over the general template code above. * These overloads will be preferred over the general template code above.
*/ */
#if PCG_USE_INLINE_ASM && __GNUC__ && (__x86_64__ || __i386__) #if PCG_USE_INLINE_ASM && __GNUC__ && (__x86_64__ || __i386__)
inline uint8_t rotr(uint8_t value, bitcount_t rot) inline uint8_t rotr(uint8_t value, bitcount_t rot) {
{ asm("rorb %%cl, %0" : "=r"(value) : "0"(value), "c"(rot));
asm ("rorb %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); return value;
return value; }
}
inline uint16_t rotr(uint16_t value, bitcount_t rot) inline uint16_t rotr(uint16_t value, bitcount_t rot) {
{ asm("rorw %%cl, %0" : "=r"(value) : "0"(value), "c"(rot));
asm ("rorw %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); return value;
return value; }
}
inline uint32_t rotr(uint32_t value, bitcount_t rot) inline uint32_t rotr(uint32_t value, bitcount_t rot) {
{ asm("rorl %%cl, %0" : "=r"(value) : "0"(value), "c"(rot));
asm ("rorl %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); return value;
return value; }
}
#if __x86_64__ #if __x86_64__
inline uint64_t rotr(uint64_t value, bitcount_t rot) inline uint64_t rotr(uint64_t value, bitcount_t rot) {
{ asm("rorq %%cl, %0" : "=r"(value) : "0"(value), "c"(rot));
asm ("rorq %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); return value;
return value; }
}
#endif // __x86_64__ #endif // __x86_64__
#elif defined(_MSC_VER) #elif defined(_MSC_VER)
@ -351,97 +326,78 @@ inline uint64_t rotr(uint64_t value, bitcount_t rot)
#pragma intrinsic(_rotr, _rotr64, _rotr8, _rotr16) #pragma intrinsic(_rotr, _rotr64, _rotr8, _rotr16)
inline uint8_t rotr(uint8_t value, bitcount_t rot) inline uint8_t rotr(uint8_t value, bitcount_t rot) { return _rotr8(value, rot); }
{
return _rotr8(value, rot);
}
inline uint16_t rotr(uint16_t value, bitcount_t rot) inline uint16_t rotr(uint16_t value, bitcount_t rot) { return _rotr16(value, rot); }
{
return _rotr16(value, rot);
}
inline uint32_t rotr(uint32_t value, bitcount_t rot) inline uint32_t rotr(uint32_t value, bitcount_t rot) { return _rotr(value, rot); }
{
return _rotr(value, rot);
}
inline uint64_t rotr(uint64_t value, bitcount_t rot) inline uint64_t rotr(uint64_t value, bitcount_t rot) { return _rotr64(value, rot); }
{
return _rotr64(value, rot);
}
#endif // PCG_USE_INLINE_ASM #endif // PCG_USE_INLINE_ASM
/*
/* * The C++ SeedSeq concept (modelled by seed_seq) can fill an array of
* The C++ SeedSeq concept (modelled by seed_seq) can fill an array of * 32-bit integers with seed data, but sometimes we want to produce
* 32-bit integers with seed data, but sometimes we want to produce * larger or smaller integers.
* larger or smaller integers. *
* * The following code handles this annoyance.
* The following code handles this annoyance. *
* * uneven_copy will copy an array of 32-bit ints to an array of larger or
* uneven_copy will copy an array of 32-bit ints to an array of larger or * smaller ints (actually, the code is general it only needing forward
* smaller ints (actually, the code is general it only needing forward * iterators). The copy is identical to the one that would be performed if
* iterators). The copy is identical to the one that would be performed if * we just did memcpy on a standard little-endian machine, but works
* we just did memcpy on a standard little-endian machine, but works * regardless of the endian of the machine (or the weirdness of the ints
* regardless of the endian of the machine (or the weirdness of the ints * involved).
* involved). *
* * generate_to initializes an array of integers using a SeedSeq
* generate_to initializes an array of integers using a SeedSeq * object. It is given the size as a static constant at compile time and
* object. It is given the size as a static constant at compile time and * tries to avoid memory allocation. If we're filling in 32-bit constants
* tries to avoid memory allocation. If we're filling in 32-bit constants * we just do it directly. If we need a separate buffer and it's small,
* we just do it directly. If we need a separate buffer and it's small, * we allocate it on the stack. Otherwise, we fall back to heap allocation.
* we allocate it on the stack. Otherwise, we fall back to heap allocation. * Ugh.
* Ugh. *
* * generate_one produces a single value of some integral type using a
* generate_one produces a single value of some integral type using a * SeedSeq object.
* SeedSeq object. */
*/
/* uneven_copy helper, case where destination ints are less than 32 bit. */ /* uneven_copy helper, case where destination ints are less than 32 bit. */
template<class SrcIter, class DestIter> template <class SrcIter, class DestIter>
SrcIter uneven_copy_impl( SrcIter uneven_copy_impl(SrcIter src_first, DestIter dest_first, DestIter dest_last, std::true_type) {
SrcIter src_first, DestIter dest_first, DestIter dest_last, typedef typename std::iterator_traits<SrcIter>::value_type src_t;
std::true_type)
{
typedef typename std::iterator_traits<SrcIter>::value_type src_t;
typedef typename std::iterator_traits<DestIter>::value_type dest_t; typedef typename std::iterator_traits<DestIter>::value_type dest_t;
constexpr bitcount_t SRC_SIZE = sizeof(src_t); constexpr bitcount_t SRC_SIZE = sizeof(src_t);
constexpr bitcount_t DEST_SIZE = sizeof(dest_t); constexpr bitcount_t DEST_SIZE = sizeof(dest_t);
constexpr bitcount_t DEST_BITS = DEST_SIZE * 8; constexpr bitcount_t DEST_BITS = DEST_SIZE * 8;
constexpr bitcount_t SCALE = SRC_SIZE / DEST_SIZE; constexpr bitcount_t SCALE = SRC_SIZE / DEST_SIZE;
size_t count = 0; size_t count = 0;
src_t value = 0; src_t value = 0;
while (dest_first != dest_last) { while (dest_first != dest_last) {
if ((count++ % SCALE) == 0) if ((count++ % SCALE) == 0)
value = *src_first++; // Get more bits value = *src_first++; // Get more bits
else else
value >>= DEST_BITS; // Move down bits value >>= DEST_BITS; // Move down bits
*dest_first++ = dest_t(value); // Truncates, ignores high bits. *dest_first++ = dest_t(value); // Truncates, ignores high bits.
} }
return src_first; return src_first;
} }
/* uneven_copy helper, case where destination ints are more than 32 bit. */ /* uneven_copy helper, case where destination ints are more than 32 bit. */
template<class SrcIter, class DestIter> template <class SrcIter, class DestIter>
SrcIter uneven_copy_impl( SrcIter uneven_copy_impl(SrcIter src_first, DestIter dest_first, DestIter dest_last, std::false_type) {
SrcIter src_first, DestIter dest_first, DestIter dest_last, typedef typename std::iterator_traits<SrcIter>::value_type src_t;
std::false_type)
{
typedef typename std::iterator_traits<SrcIter>::value_type src_t;
typedef typename std::iterator_traits<DestIter>::value_type dest_t; typedef typename std::iterator_traits<DestIter>::value_type dest_t;
constexpr auto SRC_SIZE = sizeof(src_t); constexpr auto SRC_SIZE = sizeof(src_t);
constexpr auto SRC_BITS = SRC_SIZE * 8; constexpr auto SRC_BITS = SRC_SIZE * 8;
constexpr auto DEST_SIZE = sizeof(dest_t); constexpr auto DEST_SIZE = sizeof(dest_t);
constexpr auto SCALE = (DEST_SIZE+SRC_SIZE-1) / SRC_SIZE; constexpr auto SCALE = (DEST_SIZE + SRC_SIZE - 1) / SRC_SIZE;
while (dest_first != dest_last) { while (dest_first != dest_last) {
dest_t value(0UL); dest_t value(0UL);
@ -457,91 +413,76 @@ inline uint64_t rotr(uint64_t value, bitcount_t rot)
return src_first; return src_first;
} }
/* uneven_copy, call the right code for larger vs. smaller */ /* uneven_copy, call the right code for larger vs. smaller */
template<class SrcIter, class DestIter> template <class SrcIter, class DestIter>
inline SrcIter uneven_copy(SrcIter src_first, inline SrcIter uneven_copy(SrcIter src_first, DestIter dest_first, DestIter dest_last) {
DestIter dest_first, DestIter dest_last) typedef typename std::iterator_traits<SrcIter>::value_type src_t;
{
typedef typename std::iterator_traits<SrcIter>::value_type src_t;
typedef typename std::iterator_traits<DestIter>::value_type dest_t; typedef typename std::iterator_traits<DestIter>::value_type dest_t;
constexpr bool DEST_IS_SMALLER = sizeof(dest_t) < sizeof(src_t); constexpr bool DEST_IS_SMALLER = sizeof(dest_t) < sizeof(src_t);
return uneven_copy_impl(src_first, dest_first, dest_last, return uneven_copy_impl(src_first, dest_first, dest_last, std::integral_constant<bool, DEST_IS_SMALLER>{});
std::integral_constant<bool, DEST_IS_SMALLER>{});
} }
/* generate_to, fill in a fixed-size array of integral type using a SeedSeq /* generate_to, fill in a fixed-size array of integral type using a SeedSeq
* (actually works for any random-access iterator) * (actually works for any random-access iterator)
*/ */
template <size_t size, typename SeedSeq, typename DestIter> template <size_t size, typename SeedSeq, typename DestIter>
inline void generate_to_impl(SeedSeq&& generator, DestIter dest, inline void generate_to_impl(SeedSeq&& generator, DestIter dest, std::true_type) {
std::true_type) generator.generate(dest, dest + size);
{
generator.generate(dest, dest+size);
} }
template <size_t size, typename SeedSeq, typename DestIter> template <size_t size, typename SeedSeq, typename DestIter>
void generate_to_impl(SeedSeq&& generator, DestIter dest, void generate_to_impl(SeedSeq&& generator, DestIter dest, std::false_type) {
std::false_type)
{
typedef typename std::iterator_traits<DestIter>::value_type dest_t; typedef typename std::iterator_traits<DestIter>::value_type dest_t;
constexpr auto DEST_SIZE = sizeof(dest_t); constexpr auto DEST_SIZE = sizeof(dest_t);
constexpr auto GEN_SIZE = sizeof(uint32_t); constexpr auto GEN_SIZE = sizeof(uint32_t);
constexpr bool GEN_IS_SMALLER = GEN_SIZE < DEST_SIZE; constexpr bool GEN_IS_SMALLER = GEN_SIZE < DEST_SIZE;
constexpr size_t FROM_ELEMS = constexpr size_t FROM_ELEMS =
GEN_IS_SMALLER GEN_IS_SMALLER ? size * ((DEST_SIZE + GEN_SIZE - 1) / GEN_SIZE)
? size * ((DEST_SIZE+GEN_SIZE-1) / GEN_SIZE) : (size + (GEN_SIZE / DEST_SIZE) - 1) / ((GEN_SIZE / DEST_SIZE) + GEN_IS_SMALLER);
: (size + (GEN_SIZE / DEST_SIZE) - 1)
/ ((GEN_SIZE / DEST_SIZE) + GEN_IS_SMALLER);
// this odd code ^^^^^^^^^^^^^^^^^ is work-around for // this odd code ^^^^^^^^^^^^^^^^^ is work-around for
// a bug: http://llvm.org/bugs/show_bug.cgi?id=21287 // a bug: http://llvm.org/bugs/show_bug.cgi?id=21287
if (FROM_ELEMS <= 1024) { if (FROM_ELEMS <= 1024) {
uint32_t buffer[FROM_ELEMS]; uint32_t buffer[FROM_ELEMS];
generator.generate(buffer, buffer+FROM_ELEMS); generator.generate(buffer, buffer + FROM_ELEMS);
uneven_copy(buffer, dest, dest+size); uneven_copy(buffer, dest, dest + size);
} else { } else {
uint32_t* buffer = static_cast<uint32_t*>(malloc(GEN_SIZE * FROM_ELEMS)); uint32_t* buffer = static_cast<uint32_t*>(malloc(GEN_SIZE * FROM_ELEMS));
generator.generate(buffer, buffer+FROM_ELEMS); generator.generate(buffer, buffer + FROM_ELEMS);
uneven_copy(buffer, dest, dest+size); uneven_copy(buffer, dest, dest + size);
free(static_cast<void*>(buffer)); free(static_cast<void*>(buffer));
} }
} }
template <size_t size, typename SeedSeq, typename DestIter> template <size_t size, typename SeedSeq, typename DestIter>
inline void generate_to(SeedSeq&& generator, DestIter dest) inline void generate_to(SeedSeq&& generator, DestIter dest) {
{
typedef typename std::iterator_traits<DestIter>::value_type dest_t; typedef typename std::iterator_traits<DestIter>::value_type dest_t;
constexpr bool IS_32BIT = sizeof(dest_t) == sizeof(uint32_t); constexpr bool IS_32BIT = sizeof(dest_t) == sizeof(uint32_t);
generate_to_impl<size>(std::forward<SeedSeq>(generator), dest, generate_to_impl<size>(std::forward<SeedSeq>(generator), dest, std::integral_constant<bool, IS_32BIT>{});
std::integral_constant<bool, IS_32BIT>{});
} }
/* generate_one, produce a value of integral type using a SeedSeq /* generate_one, produce a value of integral type using a SeedSeq
* (optionally, we can have it produce more than one and pick which one * (optionally, we can have it produce more than one and pick which one
* we want) * we want)
*/ */
template <typename UInt, size_t i = 0UL, size_t N = i+1UL, typename SeedSeq> template <typename UInt, size_t i = 0UL, size_t N = i + 1UL, typename SeedSeq>
inline UInt generate_one(SeedSeq&& generator) inline UInt generate_one(SeedSeq&& generator) {
{
UInt result[N]; UInt result[N];
generate_to<N>(std::forward<SeedSeq>(generator), result); generate_to<N>(std::forward<SeedSeq>(generator), result);
return result[i]; return result[i];
} }
template <typename RngType> template <typename RngType>
auto bounded_rand(RngType& rng, typename RngType::result_type upper_bound) auto bounded_rand(RngType& rng, typename RngType::result_type upper_bound) -> typename RngType::result_type {
-> typename RngType::result_type
{
typedef typename RngType::result_type rtype; typedef typename RngType::result_type rtype;
rtype threshold = (RngType::max() - RngType::min() + rtype(1) - upper_bound) rtype threshold = (RngType::max() - RngType::min() + rtype(1) - upper_bound) % upper_bound;
% upper_bound;
for (;;) { for (;;) {
rtype r = rng() - RngType::min(); rtype r = rng() - RngType::min();
if (r >= threshold) if (r >= threshold)
@ -549,9 +490,7 @@ inline uint64_t rotr(uint64_t value, bitcount_t rot)
} }
} }
template <typename Iter, typename RandType> template <typename Iter, typename RandType> void shuffle(Iter from, Iter to, RandType&& rng) {
void shuffle(Iter from, Iter to, RandType&& rng)
{
typedef typename std::iterator_traits<Iter>::difference_type delta_t; typedef typename std::iterator_traits<Iter>::difference_type delta_t;
typedef typename std::remove_reference<RandType>::type::result_type result_t; typedef typename std::remove_reference<RandType>::type::result_type result_t;
auto count = to - from; auto count = to - from;
@ -564,89 +503,74 @@ inline uint64_t rotr(uint64_t value, bitcount_t rot)
} }
} }
/* /*
* Although std::seed_seq is useful, it isn't everything. Often we want to * Although std::seed_seq is useful, it isn't everything. Often we want to
* initialize a random-number generator some other way, such as from a random * initialize a random-number generator some other way, such as from a random
* device. * device.
* *
* Technically, it does not meet the requirements of a SeedSequence because * Technically, it does not meet the requirements of a SeedSequence because
* it lacks some of the rarely-used member functions (some of which would * it lacks some of the rarely-used member functions (some of which would
* be impossible to provide). However the C++ standard is quite specific * be impossible to provide). However the C++ standard is quite specific
* that actual engines only called the generate method, so it ought not to be * that actual engines only called the generate method, so it ought not to be
* a problem in practice. * a problem in practice.
*/ */
template <typename RngType> template <typename RngType> class seed_seq_from {
class seed_seq_from {
private: private:
RngType rng_; RngType rng_;
typedef uint_least32_t result_type; typedef uint_least32_t result_type;
public: public:
template<typename... Args> template <typename... Args> seed_seq_from(Args&&... args) : rng_(std::forward<Args>(args)...) {
seed_seq_from(Args&&... args) :
rng_(std::forward<Args>(args)...)
{
// Nothing (else) to do... // Nothing (else) to do...
} }
template<typename Iter> template <typename Iter> void generate(Iter start, Iter finish) {
void generate(Iter start, Iter finish)
{
for (auto i = start; i != finish; ++i) for (auto i = start; i != finish; ++i)
*i = result_type(rng_()); *i = result_type(rng_());
} }
constexpr size_t size() const constexpr size_t size() const {
{ return (sizeof(typename RngType::result_type) > sizeof(result_type) && RngType::max() > ~size_t(0UL))
return (sizeof(typename RngType::result_type) > sizeof(result_type) ? ~size_t(0UL)
&& RngType::max() > ~size_t(0UL)) : size_t(RngType::max());
? ~size_t(0UL)
: size_t(RngType::max());
} }
}; };
/* /*
* Sometimes you might want a distinct seed based on when the program * Sometimes you might want a distinct seed based on when the program
* was compiled. That way, a particular instance of the program will * was compiled. That way, a particular instance of the program will
* behave the same way, but when recompiled it'll produce a different * behave the same way, but when recompiled it'll produce a different
* value. * value.
*/ */
template <typename IntType> template <typename IntType> struct static_arbitrary_seed {
struct static_arbitrary_seed {
private: private:
static constexpr IntType fnv(IntType hash, const char* pos) { static constexpr IntType fnv(IntType hash, const char* pos) {
return *pos == '\0' return *pos == '\0' ? hash : fnv((hash * IntType(16777619U)) ^ *pos, (pos + 1));
? hash
: fnv((hash * IntType(16777619U)) ^ *pos, (pos+1));
} }
public: public:
static constexpr IntType value = fnv(IntType(2166136261U ^ sizeof(IntType)), static constexpr IntType value = fnv(IntType(2166136261U ^ sizeof(IntType)), __DATE__ __TIME__ __FILE__);
__DATE__ __TIME__ __FILE__);
}; };
// Sometimes, when debugging or testing, it's handy to be able print the name // Sometimes, when debugging or testing, it's handy to be able print the name
// of a (in human-readable form). This code allows the idiom: // of a (in human-readable form). This code allows the idiom:
// //
// cout << printable_typename<my_foo_type_t>() // cout << printable_typename<my_foo_type_t>()
// //
// to print out my_foo_type_t (or its concrete type if it is a synonym) // to print out my_foo_type_t (or its concrete type if it is a synonym)
#if __cpp_rtti || __GXX_RTTI #if __cpp_rtti || __GXX_RTTI
template <typename T> template <typename T> struct printable_typename {};
struct printable_typename {};
template <typename T> template <typename T> std::ostream& operator<<(std::ostream& out, printable_typename<T>) {
std::ostream& operator<<(std::ostream& out, printable_typename<T>) { const char* implementation_typename = typeid(T).name();
const char *implementation_typename = typeid(T).name();
#ifdef __GNUC__ #ifdef __GNUC__
int status; int status;
char* pretty_name = char* pretty_name = abi::__cxa_demangle(implementation_typename, nullptr, nullptr, &status);
abi::__cxa_demangle(implementation_typename, nullptr, nullptr, &status);
if (status == 0) if (status == 0)
out << pretty_name; out << pretty_name;
free(static_cast<void*>(pretty_name)); free(static_cast<void*>(pretty_name));
@ -657,7 +581,7 @@ inline uint64_t rotr(uint64_t value, bitcount_t rot)
return out; return out;
} }
#endif // __cpp_rtti || __GXX_RTTI #endif // __cpp_rtti || __GXX_RTTI
} // namespace pcg_extras } // namespace pcg_extras

1722
extern/pcg_random.hpp vendored

File diff suppressed because it is too large Load Diff