AngelscriptDebuggerServer/extern/asio-1.18.2/include/asio/impl/awaitable.hpp

437 lines
11 KiB
C++

//
// impl/awaitable.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_IMPL_AWAITABLE_HPP
#define ASIO_IMPL_AWAITABLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <exception>
#include <new>
#include <tuple>
#include <utility>
#include "asio/detail/thread_context.hpp"
#include "asio/detail/thread_info_base.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/post.hpp"
#include "asio/system_error.hpp"
#include "asio/this_coro.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// An awaitable_thread represents a thread-of-execution that is composed of one
// or more "stack frames", with each frame represented by an awaitable_frame.
// All execution occurs in the context of the awaitable_thread's executor. An
// awaitable_thread continues to "pump" the stack frames by repeatedly resuming
// the top stack frame until the stack is empty, or until ownership of the
// stack is transferred to another awaitable_thread object.
//
// +------------------------------------+
// | top_of_stack_ |
// | V
// +--------------+---+ +-----------------+
// | | | |
// | awaitable_thread |<---------------------------+ awaitable_frame |
// | | attached_thread_ | |
// +--------------+---+ (Set only when +---+-------------+
// | frames are being |
// | actively pumped | caller_
// | by a thread, and |
// | then only for V
// | the top frame.) +-----------------+
// | | |
// | | awaitable_frame |
// | | |
// | +---+-------------+
// | |
// | | caller_
// | :
// | :
// | |
// | V
// | +-----------------+
// | bottom_of_stack_ | |
// +------------------------------->| awaitable_frame |
// | |
// +-----------------+
template <typename Executor>
class awaitable_frame_base
{
public:
#if !defined(ASIO_DISABLE_AWAITABLE_FRAME_RECYCLING)
void* operator new(std::size_t size)
{
return asio::detail::thread_info_base::allocate(
asio::detail::thread_info_base::awaitable_frame_tag(),
asio::detail::thread_context::top_of_thread_call_stack(),
size);
}
void operator delete(void* pointer, std::size_t size)
{
asio::detail::thread_info_base::deallocate(
asio::detail::thread_info_base::awaitable_frame_tag(),
asio::detail::thread_context::top_of_thread_call_stack(),
pointer, size);
}
#endif // !defined(ASIO_DISABLE_AWAITABLE_FRAME_RECYCLING)
// The frame starts in a suspended state until the awaitable_thread object
// pumps the stack.
auto initial_suspend() noexcept
{
return suspend_always();
}
// On final suspension the frame is popped from the top of the stack.
auto final_suspend() noexcept
{
struct result
{
awaitable_frame_base* this_;
bool await_ready() const noexcept
{
return false;
}
void await_suspend(coroutine_handle<void>) noexcept
{
this->this_->pop_frame();
}
void await_resume() const noexcept
{
}
};
return result{this};
}
void set_except(std::exception_ptr e) noexcept
{
pending_exception_ = e;
}
void set_error(const asio::error_code& ec)
{
this->set_except(std::make_exception_ptr(asio::system_error(ec)));
}
void unhandled_exception()
{
set_except(std::current_exception());
}
void rethrow_exception()
{
if (pending_exception_)
{
std::exception_ptr ex = std::exchange(pending_exception_, nullptr);
std::rethrow_exception(ex);
}
}
template <typename T>
auto await_transform(awaitable<T, Executor> a) const
{
return a;
}
// This await transformation obtains the associated executor of the thread of
// execution.
auto await_transform(this_coro::executor_t) noexcept
{
struct result
{
awaitable_frame_base* this_;
bool await_ready() const noexcept
{
return true;
}
void await_suspend(coroutine_handle<void>) noexcept
{
}
auto await_resume() const noexcept
{
return this_->attached_thread_->get_executor();
}
};
return result{this};
}
// This await transformation is used to run an async operation's initiation
// function object after the coroutine has been suspended. This ensures that
// immediate resumption of the coroutine in another thread does not cause a
// race condition.
template <typename Function>
auto await_transform(Function f,
typename enable_if<
is_convertible<
typename result_of<Function(awaitable_frame_base*)>::type,
awaitable_thread<Executor>*
>::value
>::type* = 0)
{
struct result
{
Function function_;
awaitable_frame_base* this_;
bool await_ready() const noexcept
{
return false;
}
void await_suspend(coroutine_handle<void>) noexcept
{
function_(this_);
}
void await_resume() const noexcept
{
}
};
return result{std::move(f), this};
}
void attach_thread(awaitable_thread<Executor>* handler) noexcept
{
attached_thread_ = handler;
}
awaitable_thread<Executor>* detach_thread() noexcept
{
return std::exchange(attached_thread_, nullptr);
}
void push_frame(awaitable_frame_base<Executor>* caller) noexcept
{
caller_ = caller;
attached_thread_ = caller_->attached_thread_;
attached_thread_->top_of_stack_ = this;
caller_->attached_thread_ = nullptr;
}
void pop_frame() noexcept
{
if (caller_)
caller_->attached_thread_ = attached_thread_;
attached_thread_->top_of_stack_ = caller_;
attached_thread_ = nullptr;
caller_ = nullptr;
}
void resume()
{
coro_.resume();
}
void destroy()
{
coro_.destroy();
}
protected:
coroutine_handle<void> coro_ = nullptr;
awaitable_thread<Executor>* attached_thread_ = nullptr;
awaitable_frame_base<Executor>* caller_ = nullptr;
std::exception_ptr pending_exception_ = nullptr;
};
template <typename T, typename Executor>
class awaitable_frame
: public awaitable_frame_base<Executor>
{
public:
awaitable_frame() noexcept
{
}
awaitable_frame(awaitable_frame&& other) noexcept
: awaitable_frame_base<Executor>(std::move(other))
{
}
~awaitable_frame()
{
if (has_result_)
static_cast<T*>(static_cast<void*>(result_))->~T();
}
awaitable<T, Executor> get_return_object() noexcept
{
this->coro_ = coroutine_handle<awaitable_frame>::from_promise(*this);
return awaitable<T, Executor>(this);
};
template <typename U>
void return_value(U&& u)
{
new (&result_) T(std::forward<U>(u));
has_result_ = true;
}
template <typename... Us>
void return_values(Us&&... us)
{
this->return_value(std::forward_as_tuple(std::forward<Us>(us)...));
}
T get()
{
this->caller_ = nullptr;
this->rethrow_exception();
return std::move(*static_cast<T*>(static_cast<void*>(result_)));
}
private:
alignas(T) unsigned char result_[sizeof(T)];
bool has_result_ = false;
};
template <typename Executor>
class awaitable_frame<void, Executor>
: public awaitable_frame_base<Executor>
{
public:
awaitable<void, Executor> get_return_object()
{
this->coro_ = coroutine_handle<awaitable_frame>::from_promise(*this);
return awaitable<void, Executor>(this);
};
void return_void()
{
}
void get()
{
this->caller_ = nullptr;
this->rethrow_exception();
}
};
template <typename Executor>
class awaitable_thread
{
public:
typedef Executor executor_type;
// Construct from the entry point of a new thread of execution.
awaitable_thread(awaitable<void, Executor> p, const Executor& ex)
: bottom_of_stack_(std::move(p)),
top_of_stack_(bottom_of_stack_.frame_),
executor_(ex)
{
}
// Transfer ownership from another awaitable_thread.
awaitable_thread(awaitable_thread&& other) noexcept
: bottom_of_stack_(std::move(other.bottom_of_stack_)),
top_of_stack_(std::exchange(other.top_of_stack_, nullptr)),
executor_(std::move(other.executor_))
{
}
// Clean up with a last ditch effort to ensure the thread is unwound within
// the context of the executor.
~awaitable_thread()
{
if (bottom_of_stack_.valid())
{
// Coroutine "stack unwinding" must be performed through the executor.
(post)(executor_,
[a = std::move(bottom_of_stack_)]() mutable
{
awaitable<void, Executor>(std::move(a));
});
}
}
executor_type get_executor() const noexcept
{
return executor_;
}
// Launch a new thread of execution.
void launch()
{
top_of_stack_->attach_thread(this);
pump();
}
protected:
template <typename> friend class awaitable_frame_base;
// Repeatedly resume the top stack frame until the stack is empty or until it
// has been transferred to another resumable_thread object.
void pump()
{
do top_of_stack_->resume(); while (top_of_stack_);
if (bottom_of_stack_.valid())
{
awaitable<void, Executor> a(std::move(bottom_of_stack_));
a.frame_->rethrow_exception();
}
}
awaitable<void, Executor> bottom_of_stack_;
awaitable_frame_base<Executor>* top_of_stack_;
executor_type executor_;
};
} // namespace detail
} // namespace asio
#if !defined(GENERATING_DOCUMENTATION)
# if defined(ASIO_HAS_STD_COROUTINE)
namespace std {
template <typename T, typename Executor, typename... Args>
struct coroutine_traits<asio::awaitable<T, Executor>, Args...>
{
typedef asio::detail::awaitable_frame<T, Executor> promise_type;
};
} // namespace std
# else // defined(ASIO_HAS_STD_COROUTINE)
namespace std { namespace experimental {
template <typename T, typename Executor, typename... Args>
struct coroutine_traits<asio::awaitable<T, Executor>, Args...>
{
typedef asio::detail::awaitable_frame<T, Executor> promise_type;
};
}} // namespace std::experimental
# endif // defined(ASIO_HAS_STD_COROUTINE)
#endif // !defined(GENERATING_DOCUMENTATION)
#include "asio/detail/pop_options.hpp"
#endif // ASIO_IMPL_AWAITABLE_HPP