Move dependency handling over to CPM

This commit is contained in:
Deukhoofd 2022-02-11 11:43:25 +01:00
parent 2fe2286df8
commit 3e37ac3b0b
Signed by: Deukhoofd
GPG Key ID: F63E044490819F6F
570 changed files with 1091 additions and 172220 deletions

View File

@ -1,5 +1,6 @@
cmake_minimum_required(VERSION 3.20) cmake_minimum_required(VERSION 3.20)
project(AngelscriptDebugger) project(AngelscriptDebugger)
include(CPM.cmake)
set(CMAKE_CXX_STANDARD 20) set(CMAKE_CXX_STANDARD 20)
set(CMAKE_POSITION_INDEPENDENT_CODE ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON)
@ -8,9 +9,6 @@ option(WINDOWS "Whether the build target is Windows or not." OFF)
option(SHARED "Whether we should build a shared library, instead of a static one." ON) option(SHARED "Whether we should build a shared library, instead of a static one." ON)
option(STATICC "Whether gcc and stdc++ should be linked statically to the library." OFF) option(STATICC "Whether gcc and stdc++ should be linked statically to the library." OFF)
include(CMakeLists.txt.angelscript.in)
include_angelscript()
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU") if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
add_compile_options(-fconcepts) add_compile_options(-fconcepts)
@ -48,7 +46,71 @@ add_library(AngelscriptDebugger ${LIBTYPE} ${SRC_FILES})
target_compile_options(AngelscriptDebugger PRIVATE -Wall -Wextra -Werror) target_compile_options(AngelscriptDebugger PRIVATE -Wall -Wextra -Werror)
target_include_directories(AngelscriptDebugger PRIVATE extern/asio-1.18.2/include) target_include_directories(AngelscriptDebugger PRIVATE extern/asio-1.18.2/include)
SET(_LINKS angelscript) CPMAddPackage(
NAME Angelscript
GIT_REPOSITORY https://git.p-epsilon.com/Deukhoofd/Angelscript.git
GIT_TAG master
DOWNLOAD_ONLY YES
)
if (Angelscript_ADDED)
execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" . -B ${Angelscript_BINARY_DIR}
-DBUILD_SHARED_LIBS=${SHARED} -DMSVC=${WINDOWS} -DLINK_STD_STATICALLY=${STATICC} -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
RESULT_VARIABLE result
WORKING_DIRECTORY ${Angelscript_SOURCE_DIR}/angelscript/projects/cmake)
execute_process(COMMAND ${CMAKE_COMMAND} --build ${Angelscript_BINARY_DIR}
RESULT_VARIABLE result
WORKING_DIRECTORY ${Angelscript_SOURCE_DIR}/angelscript/projects/cmake)
endif()
include_directories(${Angelscript_SOURCE_DIR}/angelscript/include)
target_link_directories(AngelscriptDebugger PUBLIC ${Angelscript_BINARY_DIR})
find_package(Threads REQUIRED)
CPMAddPackage("gh:chriskohlhoff/asio#asio-1-21-0@1.21.0")
if(asio_ADDED)
add_library(asio INTERFACE)
target_include_directories(asio SYSTEM INTERFACE ${asio_SOURCE_DIR}/asio/include)
target_compile_definitions(asio INTERFACE ASIO_STANDALONE ASIO_NO_DEPRECATED)
target_link_libraries(asio INTERFACE Threads::Threads)
if(WIN32)
# macro see @ https://stackoverflow.com/a/40217291/1746503
macro(get_win32_winnt version)
if(CMAKE_SYSTEM_VERSION)
set(ver ${CMAKE_SYSTEM_VERSION})
string(REGEX MATCH "^([0-9]+).([0-9])" ver ${ver})
string(REGEX MATCH "^([0-9]+)" verMajor ${ver})
# Check for Windows 10, b/c we'll need to convert to hex 'A'.
if("${verMajor}" MATCHES "10")
set(verMajor "A")
string(REGEX REPLACE "^([0-9]+)" ${verMajor} ver ${ver})
endif("${verMajor}" MATCHES "10")
# Remove all remaining '.' characters.
string(REPLACE "." "" ver ${ver})
# Prepend each digit with a zero.
string(REGEX REPLACE "([0-9A-Z])" "0\\1" ver ${ver})
set(${version} "0x${ver}")
endif()
endmacro()
if(NOT DEFINED _WIN32_WINNT)
get_win32_winnt(ver)
set(_WIN32_WINNT ${ver})
endif()
message(STATUS "Set _WIN32_WINNET=${_WIN32_WINNT}")
target_compile_definitions(asio INTERFACE _WIN32_WINNT=${_WIN32_WINNT} WIN32_LEAN_AND_MEAN)
endif()
endif()
CPMAddPackage("gh:nlohmann/json@3.10.5")
SET(_LINKS -langelscript -pthread asio nlohmann_json::nlohmann_json)
if (WINDOWS) if (WINDOWS)
MESSAGE(WARNING, "Using Windows Build.") MESSAGE(WARNING, "Using Windows Build.")
# Add a definition for the compiler, so we can use it in C++ as well. # Add a definition for the compiler, so we can use it in C++ as well.
@ -65,12 +127,8 @@ endif (WINDOWS)
if (STATICC) if (STATICC)
set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--as-needed") set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--as-needed")
message(STATUS "Linking C library statically") message(STATUS "Linking C library statically")
set(_LINKS ${_LINKS} -static-libgcc -static-libstdc++ -Wl,-Bstatic -lm -lstdc++ -lpthread -Wl,-Bdynamic) set(_LINKS ${_LINKS} -static-libgcc -static-libstdc++)
SET(_TESTLINKS ${_TESTLINKS} -static-libgcc -static-libstdc++ -Wl,-Bstatic -lstdc++ -lpthread -Wl,-Bdynamic)
else()
SET(_LINKS ${_LINKS} -Wl,--whole-archive -lpthread -Wl,--no-whole-archive)
endif() endif()
target_link_libraries(AngelscriptDebugger PUBLIC ${_LINKS}) target_link_libraries(AngelscriptDebugger PUBLIC ${_LINKS})
file(GLOB_RECURSE RUNNER_SRC_FILES "TestRunner/*.cpp" "TestRunner/*.hpp") file(GLOB_RECURSE RUNNER_SRC_FILES "TestRunner/*.cpp" "TestRunner/*.hpp")

View File

@ -1,48 +0,0 @@
cmake_minimum_required(VERSION 2.8.12)
project(AngelscriptDebugger NONE)
include(ExternalProject)
ExternalProject_Add(AngelscriptProj
GIT_REPOSITORY https://git.p-epsilon.com/Deukhoofd/Angelscript.git
GIT_TAG master
PREFIX "${CMAKE_CURRENT_BINARY_DIR}/Angelscript"
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
function(include_angelscript)
configure_file(CMakeLists.txt.angelscript.in Angelscript/download/CMakeLists.txt)
execute_process(COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/Angelscript/download)
if (result)
message(FATAL_ERROR "CMake step for angelscript failed: ${result}")
endif ()
execute_process(COMMAND ${CMAKE_COMMAND} --build .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/Angelscript/download)
if (result)
message(FATAL_ERROR "Build step for angelscript failed: ${result}")
endif ()
SET(BUILD_SHARED_LIBS ${SHARED})
SET(LINK_STD_STATICALLY ${STATICC})
SET(CMAKE_BUILD_WITH_INSTALL_RPATH ON)
if (WINDOWS)
SET(MSVC 1)
endif()
add_subdirectory(${CMAKE_CURRENT_BINARY_DIR}/Angelscript/src/AngelscriptProj/angelscript/projects/cmake
${CMAKE_CURRENT_BINARY_DIR}/Angelscript/bin
EXCLUDE_FROM_ALL)
if (WINDOWS)
set_target_properties(angelscript PROPERTIES SUFFIX ".dll")
endif (WINDOWS)
execute_process(COMMAND mkdir -p ${CMAKE_CURRENT_BINARY_DIR}/Angelscript/include)
include_directories(SYSTEM ${CMAKE_CURRENT_BINARY_DIR}/Angelscript/src/AngelscriptProj/angelscript/include)
endfunction()

1021
CPM.cmake Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,566 +0,0 @@
# find . -name "*.*pp" | sed -e 's/^\.\///' | sed -e 's/^.*$/ & \\/' | sort
nobase_include_HEADERS = \
asio/any_io_executor.hpp \
asio/associated_allocator.hpp \
asio/associated_executor.hpp \
asio/async_result.hpp \
asio/awaitable.hpp \
asio/basic_datagram_socket.hpp \
asio/basic_deadline_timer.hpp \
asio/basic_io_object.hpp \
asio/basic_raw_socket.hpp \
asio/basic_seq_packet_socket.hpp \
asio/basic_serial_port.hpp \
asio/basic_signal_set.hpp \
asio/basic_socket_acceptor.hpp \
asio/basic_socket.hpp \
asio/basic_socket_iostream.hpp \
asio/basic_socket_streambuf.hpp \
asio/basic_streambuf_fwd.hpp \
asio/basic_streambuf.hpp \
asio/basic_stream_socket.hpp \
asio/basic_waitable_timer.hpp \
asio/bind_executor.hpp \
asio/buffered_read_stream_fwd.hpp \
asio/buffered_read_stream.hpp \
asio/buffered_stream_fwd.hpp \
asio/buffered_stream.hpp \
asio/buffered_write_stream_fwd.hpp \
asio/buffered_write_stream.hpp \
asio/buffer.hpp \
asio/buffers_iterator.hpp \
asio/co_spawn.hpp \
asio/completion_condition.hpp \
asio/compose.hpp \
asio/connect.hpp \
asio/coroutine.hpp \
asio/deadline_timer.hpp \
asio/defer.hpp \
asio/detached.hpp \
asio/detail/array_fwd.hpp \
asio/detail/array.hpp \
asio/detail/assert.hpp \
asio/detail/atomic_count.hpp \
asio/detail/base_from_completion_cond.hpp \
asio/detail/bind_handler.hpp \
asio/detail/blocking_executor_op.hpp \
asio/detail/buffered_stream_storage.hpp \
asio/detail/buffer_resize_guard.hpp \
asio/detail/buffer_sequence_adapter.hpp \
asio/detail/bulk_executor_op.hpp \
asio/detail/call_stack.hpp \
asio/detail/chrono.hpp \
asio/detail/chrono_time_traits.hpp \
asio/detail/completion_handler.hpp \
asio/detail/concurrency_hint.hpp \
asio/detail/conditionally_enabled_event.hpp \
asio/detail/conditionally_enabled_mutex.hpp \
asio/detail/config.hpp \
asio/detail/consuming_buffers.hpp \
asio/detail/cstddef.hpp \
asio/detail/cstdint.hpp \
asio/detail/date_time_fwd.hpp \
asio/detail/deadline_timer_service.hpp \
asio/detail/dependent_type.hpp \
asio/detail/descriptor_ops.hpp \
asio/detail/descriptor_read_op.hpp \
asio/detail/descriptor_write_op.hpp \
asio/detail/dev_poll_reactor.hpp \
asio/detail/epoll_reactor.hpp \
asio/detail/eventfd_select_interrupter.hpp \
asio/detail/event.hpp \
asio/detail/executor_function.hpp \
asio/detail/executor_op.hpp \
asio/detail/fd_set_adapter.hpp \
asio/detail/fenced_block.hpp \
asio/detail/functional.hpp \
asio/detail/future.hpp \
asio/detail/gcc_arm_fenced_block.hpp \
asio/detail/gcc_hppa_fenced_block.hpp \
asio/detail/gcc_sync_fenced_block.hpp \
asio/detail/gcc_x86_fenced_block.hpp \
asio/detail/global.hpp \
asio/detail/handler_alloc_helpers.hpp \
asio/detail/handler_cont_helpers.hpp \
asio/detail/handler_invoke_helpers.hpp \
asio/detail/handler_tracking.hpp \
asio/detail/handler_type_requirements.hpp \
asio/detail/handler_work.hpp \
asio/detail/hash_map.hpp \
asio/detail/impl/buffer_sequence_adapter.ipp \
asio/detail/impl/descriptor_ops.ipp \
asio/detail/impl/dev_poll_reactor.hpp \
asio/detail/impl/dev_poll_reactor.ipp \
asio/detail/impl/epoll_reactor.hpp \
asio/detail/impl/epoll_reactor.ipp \
asio/detail/impl/eventfd_select_interrupter.ipp \
asio/detail/impl/handler_tracking.ipp \
asio/detail/impl/kqueue_reactor.hpp \
asio/detail/impl/kqueue_reactor.ipp \
asio/detail/impl/null_event.ipp \
asio/detail/impl/pipe_select_interrupter.ipp \
asio/detail/impl/posix_event.ipp \
asio/detail/impl/posix_mutex.ipp \
asio/detail/impl/posix_thread.ipp \
asio/detail/impl/posix_tss_ptr.ipp \
asio/detail/impl/reactive_descriptor_service.ipp \
asio/detail/impl/reactive_serial_port_service.ipp \
asio/detail/impl/reactive_socket_service_base.ipp \
asio/detail/impl/resolver_service_base.ipp \
asio/detail/impl/scheduler.ipp \
asio/detail/impl/select_reactor.hpp \
asio/detail/impl/select_reactor.ipp \
asio/detail/impl/service_registry.hpp \
asio/detail/impl/service_registry.ipp \
asio/detail/impl/signal_set_service.ipp \
asio/detail/impl/socket_ops.ipp \
asio/detail/impl/socket_select_interrupter.ipp \
asio/detail/impl/strand_executor_service.hpp \
asio/detail/impl/strand_executor_service.ipp \
asio/detail/impl/strand_service.hpp \
asio/detail/impl/strand_service.ipp \
asio/detail/impl/thread_context.ipp \
asio/detail/impl/throw_error.ipp \
asio/detail/impl/timer_queue_ptime.ipp \
asio/detail/impl/timer_queue_set.ipp \
asio/detail/impl/win_event.ipp \
asio/detail/impl/win_iocp_handle_service.ipp \
asio/detail/impl/win_iocp_io_context.hpp \
asio/detail/impl/win_iocp_io_context.ipp \
asio/detail/impl/win_iocp_serial_port_service.ipp \
asio/detail/impl/win_iocp_socket_service_base.ipp \
asio/detail/impl/win_mutex.ipp \
asio/detail/impl/win_object_handle_service.ipp \
asio/detail/impl/winrt_ssocket_service_base.ipp \
asio/detail/impl/winrt_timer_scheduler.hpp \
asio/detail/impl/winrt_timer_scheduler.ipp \
asio/detail/impl/winsock_init.ipp \
asio/detail/impl/win_static_mutex.ipp \
asio/detail/impl/win_thread.ipp \
asio/detail/impl/win_tss_ptr.ipp \
asio/detail/io_control.hpp \
asio/detail/io_object_impl.hpp \
asio/detail/is_buffer_sequence.hpp \
asio/detail/is_executor.hpp \
asio/detail/keyword_tss_ptr.hpp \
asio/detail/kqueue_reactor.hpp \
asio/detail/limits.hpp \
asio/detail/local_free_on_block_exit.hpp \
asio/detail/macos_fenced_block.hpp \
asio/detail/memory.hpp \
asio/detail/mutex.hpp \
asio/detail/non_const_lvalue.hpp \
asio/detail/noncopyable.hpp \
asio/detail/null_event.hpp \
asio/detail/null_fenced_block.hpp \
asio/detail/null_global.hpp \
asio/detail/null_mutex.hpp \
asio/detail/null_reactor.hpp \
asio/detail/null_signal_blocker.hpp \
asio/detail/null_socket_service.hpp \
asio/detail/null_static_mutex.hpp \
asio/detail/null_thread.hpp \
asio/detail/null_tss_ptr.hpp \
asio/detail/object_pool.hpp \
asio/detail/old_win_sdk_compat.hpp \
asio/detail/operation.hpp \
asio/detail/op_queue.hpp \
asio/detail/pipe_select_interrupter.hpp \
asio/detail/pop_options.hpp \
asio/detail/posix_event.hpp \
asio/detail/posix_fd_set_adapter.hpp \
asio/detail/posix_global.hpp \
asio/detail/posix_mutex.hpp \
asio/detail/posix_signal_blocker.hpp \
asio/detail/posix_static_mutex.hpp \
asio/detail/posix_thread.hpp \
asio/detail/posix_tss_ptr.hpp \
asio/detail/push_options.hpp \
asio/detail/reactive_descriptor_service.hpp \
asio/detail/reactive_null_buffers_op.hpp \
asio/detail/reactive_serial_port_service.hpp \
asio/detail/reactive_socket_accept_op.hpp \
asio/detail/reactive_socket_connect_op.hpp \
asio/detail/reactive_socket_recvfrom_op.hpp \
asio/detail/reactive_socket_recvmsg_op.hpp \
asio/detail/reactive_socket_recv_op.hpp \
asio/detail/reactive_socket_send_op.hpp \
asio/detail/reactive_socket_sendto_op.hpp \
asio/detail/reactive_socket_service_base.hpp \
asio/detail/reactive_socket_service.hpp \
asio/detail/reactive_wait_op.hpp \
asio/detail/reactor_fwd.hpp \
asio/detail/reactor.hpp \
asio/detail/reactor_op.hpp \
asio/detail/reactor_op_queue.hpp \
asio/detail/recycling_allocator.hpp \
asio/detail/regex_fwd.hpp \
asio/detail/resolve_endpoint_op.hpp \
asio/detail/resolve_op.hpp \
asio/detail/resolve_query_op.hpp \
asio/detail/resolver_service_base.hpp \
asio/detail/resolver_service.hpp \
asio/detail/scheduler.hpp \
asio/detail/scheduler_operation.hpp \
asio/detail/scheduler_thread_info.hpp \
asio/detail/scoped_lock.hpp \
asio/detail/scoped_ptr.hpp \
asio/detail/select_interrupter.hpp \
asio/detail/select_reactor.hpp \
asio/detail/service_registry.hpp \
asio/detail/signal_blocker.hpp \
asio/detail/signal_handler.hpp \
asio/detail/signal_init.hpp \
asio/detail/signal_op.hpp \
asio/detail/signal_set_service.hpp \
asio/detail/socket_holder.hpp \
asio/detail/socket_ops.hpp \
asio/detail/socket_option.hpp \
asio/detail/socket_select_interrupter.hpp \
asio/detail/socket_types.hpp \
asio/detail/solaris_fenced_block.hpp \
asio/detail/source_location.hpp \
asio/detail/static_mutex.hpp \
asio/detail/std_event.hpp \
asio/detail/std_fenced_block.hpp \
asio/detail/std_global.hpp \
asio/detail/std_mutex.hpp \
asio/detail/std_static_mutex.hpp \
asio/detail/std_thread.hpp \
asio/detail/strand_executor_service.hpp \
asio/detail/strand_service.hpp \
asio/detail/string_view.hpp \
asio/detail/thread_context.hpp \
asio/detail/thread_group.hpp \
asio/detail/thread.hpp \
asio/detail/thread_info_base.hpp \
asio/detail/throw_error.hpp \
asio/detail/throw_exception.hpp \
asio/detail/timer_queue_base.hpp \
asio/detail/timer_queue.hpp \
asio/detail/timer_queue_ptime.hpp \
asio/detail/timer_queue_set.hpp \
asio/detail/timer_scheduler_fwd.hpp \
asio/detail/timer_scheduler.hpp \
asio/detail/tss_ptr.hpp \
asio/detail/type_traits.hpp \
asio/detail/variadic_templates.hpp \
asio/detail/wait_handler.hpp \
asio/detail/wait_op.hpp \
asio/detail/winapp_thread.hpp \
asio/detail/wince_thread.hpp \
asio/detail/win_event.hpp \
asio/detail/win_fd_set_adapter.hpp \
asio/detail/win_fenced_block.hpp \
asio/detail/win_global.hpp \
asio/detail/win_iocp_handle_read_op.hpp \
asio/detail/win_iocp_handle_service.hpp \
asio/detail/win_iocp_handle_write_op.hpp \
asio/detail/win_iocp_io_context.hpp \
asio/detail/win_iocp_null_buffers_op.hpp \
asio/detail/win_iocp_operation.hpp \
asio/detail/win_iocp_overlapped_op.hpp \
asio/detail/win_iocp_overlapped_ptr.hpp \
asio/detail/win_iocp_serial_port_service.hpp \
asio/detail/win_iocp_socket_accept_op.hpp \
asio/detail/win_iocp_socket_connect_op.hpp \
asio/detail/win_iocp_socket_recvfrom_op.hpp \
asio/detail/win_iocp_socket_recvmsg_op.hpp \
asio/detail/win_iocp_socket_recv_op.hpp \
asio/detail/win_iocp_socket_send_op.hpp \
asio/detail/win_iocp_socket_service_base.hpp \
asio/detail/win_iocp_socket_service.hpp \
asio/detail/win_iocp_thread_info.hpp \
asio/detail/win_iocp_wait_op.hpp \
asio/detail/win_mutex.hpp \
asio/detail/win_object_handle_service.hpp \
asio/detail/winrt_async_manager.hpp \
asio/detail/winrt_async_op.hpp \
asio/detail/winrt_resolve_op.hpp \
asio/detail/winrt_resolver_service.hpp \
asio/detail/winrt_socket_connect_op.hpp \
asio/detail/winrt_socket_recv_op.hpp \
asio/detail/winrt_socket_send_op.hpp \
asio/detail/winrt_ssocket_service_base.hpp \
asio/detail/winrt_ssocket_service.hpp \
asio/detail/winrt_timer_scheduler.hpp \
asio/detail/winrt_utils.hpp \
asio/detail/winsock_init.hpp \
asio/detail/win_static_mutex.hpp \
asio/detail/win_thread.hpp \
asio/detail/win_tss_ptr.hpp \
asio/detail/work_dispatcher.hpp \
asio/detail/wrapped_handler.hpp \
asio/dispatch.hpp \
asio/error_code.hpp \
asio/error.hpp \
asio/execution.hpp \
asio/execution_context.hpp \
asio/execution/allocator.hpp \
asio/execution/any_executor.hpp \
asio/execution/bad_executor.hpp \
asio/execution/blocking.hpp \
asio/execution/blocking_adaptation.hpp \
asio/execution/bulk_execute.hpp \
asio/execution/bulk_guarantee.hpp \
asio/execution/connect.hpp \
asio/execution/context.hpp \
asio/execution/context_as.hpp \
asio/execution/detail/as_invocable.hpp \
asio/execution/detail/as_operation.hpp \
asio/execution/detail/as_receiver.hpp \
asio/execution/detail/bulk_sender.hpp \
asio/execution/detail/void_receiver.hpp \
asio/execution/detail/submit_receiver.hpp \
asio/execution/execute.hpp \
asio/execution/executor.hpp \
asio/execution/impl/bad_executor.ipp \
asio/execution/impl/receiver_invocation_error.ipp \
asio/execution/invocable_archetype.hpp \
asio/execution/mapping.hpp \
asio/execution/occupancy.hpp \
asio/execution/operation_state.hpp \
asio/execution/outstanding_work.hpp \
asio/execution/prefer_only.hpp \
asio/execution/receiver.hpp \
asio/execution/receiver_invocation_error.hpp \
asio/execution/relationship.hpp \
asio/execution/schedule.hpp \
asio/execution/scheduler.hpp \
asio/execution/sender.hpp \
asio/execution/set_done.hpp \
asio/execution/set_error.hpp \
asio/execution/set_value.hpp \
asio/execution/start.hpp \
asio/execution/submit.hpp \
asio/executor.hpp \
asio/executor_work_guard.hpp \
asio/experimental/as_single.hpp \
asio/experimental/impl/as_single.hpp \
asio/generic/basic_endpoint.hpp \
asio/generic/datagram_protocol.hpp \
asio/generic/detail/endpoint.hpp \
asio/generic/detail/impl/endpoint.ipp \
asio/generic/raw_protocol.hpp \
asio/generic/seq_packet_protocol.hpp \
asio/generic/stream_protocol.hpp \
asio/handler_alloc_hook.hpp \
asio/handler_continuation_hook.hpp \
asio/handler_invoke_hook.hpp \
asio/high_resolution_timer.hpp \
asio.hpp \
asio/impl/awaitable.hpp \
asio/impl/buffered_read_stream.hpp \
asio/impl/buffered_write_stream.hpp \
asio/impl/co_spawn.hpp \
asio/impl/compose.hpp \
asio/impl/connect.hpp \
asio/impl/defer.hpp \
asio/impl/detached.hpp \
asio/impl/dispatch.hpp \
asio/impl/error_code.ipp \
asio/impl/error.ipp \
asio/impl/execution_context.hpp \
asio/impl/execution_context.ipp \
asio/impl/executor.hpp \
asio/impl/executor.ipp \
asio/impl/handler_alloc_hook.ipp \
asio/impl/io_context.hpp \
asio/impl/io_context.ipp \
asio/impl/multiple_exceptions.ipp \
asio/impl/post.hpp \
asio/impl/read_at.hpp \
asio/impl/read.hpp \
asio/impl/read_until.hpp \
asio/impl/redirect_error.hpp \
asio/impl/serial_port_base.hpp \
asio/impl/serial_port_base.ipp \
asio/impl/spawn.hpp \
asio/impl/src.hpp \
asio/impl/system_context.hpp \
asio/impl/system_context.ipp \
asio/impl/system_executor.hpp \
asio/impl/thread_pool.hpp \
asio/impl/thread_pool.ipp \
asio/impl/use_awaitable.hpp \
asio/impl/use_future.hpp \
asio/impl/write_at.hpp \
asio/impl/write.hpp \
asio/io_context.hpp \
asio/io_context_strand.hpp \
asio/io_service.hpp \
asio/io_service_strand.hpp \
asio/ip/address.hpp \
asio/ip/address_v4.hpp \
asio/ip/address_v4_iterator.hpp \
asio/ip/address_v4_range.hpp \
asio/ip/address_v6.hpp \
asio/ip/address_v6_iterator.hpp \
asio/ip/address_v6_range.hpp \
asio/ip/bad_address_cast.hpp \
asio/ip/basic_endpoint.hpp \
asio/ip/basic_resolver_entry.hpp \
asio/ip/basic_resolver.hpp \
asio/ip/basic_resolver_iterator.hpp \
asio/ip/basic_resolver_query.hpp \
asio/ip/basic_resolver_results.hpp \
asio/ip/detail/endpoint.hpp \
asio/ip/detail/impl/endpoint.ipp \
asio/ip/detail/socket_option.hpp \
asio/ip/host_name.hpp \
asio/ip/icmp.hpp \
asio/ip/impl/address.hpp \
asio/ip/impl/address.ipp \
asio/ip/impl/address_v4.hpp \
asio/ip/impl/address_v4.ipp \
asio/ip/impl/address_v6.hpp \
asio/ip/impl/address_v6.ipp \
asio/ip/impl/basic_endpoint.hpp \
asio/ip/impl/host_name.ipp \
asio/ip/impl/network_v4.hpp \
asio/ip/impl/network_v4.ipp \
asio/ip/impl/network_v6.hpp \
asio/ip/impl/network_v6.ipp \
asio/ip/multicast.hpp \
asio/ip/network_v4.hpp \
asio/ip/network_v6.hpp \
asio/ip/resolver_base.hpp \
asio/ip/resolver_query_base.hpp \
asio/ip/tcp.hpp \
asio/ip/udp.hpp \
asio/ip/unicast.hpp \
asio/ip/v6_only.hpp \
asio/is_applicable_property.hpp \
asio/is_executor.hpp \
asio/is_read_buffered.hpp \
asio/is_write_buffered.hpp \
asio/local/basic_endpoint.hpp \
asio/local/connect_pair.hpp \
asio/local/datagram_protocol.hpp \
asio/local/detail/endpoint.hpp \
asio/local/detail/impl/endpoint.ipp \
asio/local/stream_protocol.hpp \
asio/multiple_exceptions.hpp \
asio/packaged_task.hpp \
asio/placeholders.hpp \
asio/posix/basic_descriptor.hpp \
asio/posix/basic_stream_descriptor.hpp \
asio/posix/descriptor_base.hpp \
asio/posix/descriptor.hpp \
asio/posix/stream_descriptor.hpp \
asio/post.hpp \
asio/prefer.hpp \
asio/query.hpp \
asio/read_at.hpp \
asio/read.hpp \
asio/read_until.hpp \
asio/redirect_error.hpp \
asio/require.hpp \
asio/require_concept.hpp \
asio/serial_port_base.hpp \
asio/serial_port.hpp \
asio/signal_set.hpp \
asio/socket_base.hpp \
asio/spawn.hpp \
asio/ssl/context_base.hpp \
asio/ssl/context.hpp \
asio/ssl/detail/buffered_handshake_op.hpp \
asio/ssl/detail/engine.hpp \
asio/ssl/detail/handshake_op.hpp \
asio/ssl/detail/impl/engine.ipp \
asio/ssl/detail/impl/openssl_init.ipp \
asio/ssl/detail/io.hpp \
asio/ssl/detail/openssl_init.hpp \
asio/ssl/detail/openssl_types.hpp \
asio/ssl/detail/password_callback.hpp \
asio/ssl/detail/read_op.hpp \
asio/ssl/detail/shutdown_op.hpp \
asio/ssl/detail/stream_core.hpp \
asio/ssl/detail/verify_callback.hpp \
asio/ssl/detail/write_op.hpp \
asio/ssl/error.hpp \
asio/ssl.hpp \
asio/ssl/host_name_verification.hpp \
asio/ssl/impl/context.hpp \
asio/ssl/impl/context.ipp \
asio/ssl/impl/error.ipp \
asio/ssl/impl/host_name_verification.ipp \
asio/ssl/impl/rfc2818_verification.ipp \
asio/ssl/impl/src.hpp \
asio/ssl/rfc2818_verification.hpp \
asio/ssl/stream_base.hpp \
asio/ssl/stream.hpp \
asio/ssl/verify_context.hpp \
asio/ssl/verify_mode.hpp \
asio/static_thread_pool.hpp \
asio/steady_timer.hpp \
asio/strand.hpp \
asio/streambuf.hpp \
asio/system_context.hpp \
asio/system_error.hpp \
asio/system_executor.hpp \
asio/system_timer.hpp \
asio/this_coro.hpp \
asio/thread.hpp \
asio/thread_pool.hpp \
asio/time_traits.hpp \
asio/traits/bulk_execute_free.hpp \
asio/traits/bulk_execute_member.hpp \
asio/traits/connect_free.hpp \
asio/traits/connect_member.hpp \
asio/traits/equality_comparable.hpp \
asio/traits/execute_free.hpp \
asio/traits/execute_member.hpp \
asio/traits/prefer_free.hpp \
asio/traits/prefer_member.hpp \
asio/traits/query_free.hpp \
asio/traits/query_member.hpp \
asio/traits/query_static_constexpr_member.hpp \
asio/traits/require_concept_free.hpp \
asio/traits/require_concept_member.hpp \
asio/traits/require_free.hpp \
asio/traits/require_member.hpp \
asio/traits/schedule_free.hpp \
asio/traits/schedule_member.hpp \
asio/traits/set_done_free.hpp \
asio/traits/set_done_member.hpp \
asio/traits/set_error_free.hpp \
asio/traits/set_error_member.hpp \
asio/traits/set_value_free.hpp \
asio/traits/set_value_member.hpp \
asio/traits/start_free.hpp \
asio/traits/start_member.hpp \
asio/traits/static_query.hpp \
asio/traits/static_require.hpp \
asio/traits/static_require_concept.hpp \
asio/traits/submit_free.hpp \
asio/traits/submit_member.hpp \
asio/ts/buffer.hpp \
asio/ts/executor.hpp \
asio/ts/internet.hpp \
asio/ts/io_context.hpp \
asio/ts/netfwd.hpp \
asio/ts/net.hpp \
asio/ts/socket.hpp \
asio/ts/timer.hpp \
asio/unyield.hpp \
asio/use_awaitable.hpp \
asio/use_future.hpp \
asio/uses_executor.hpp \
asio/version.hpp \
asio/wait_traits.hpp \
asio/windows/basic_object_handle.hpp \
asio/windows/basic_overlapped_handle.hpp \
asio/windows/basic_random_access_handle.hpp \
asio/windows/basic_stream_handle.hpp \
asio/windows/object_handle.hpp \
asio/windows/overlapped_handle.hpp \
asio/windows/overlapped_ptr.hpp \
asio/windows/random_access_handle.hpp \
asio/windows/stream_handle.hpp \
asio/write_at.hpp \
asio/write.hpp \
asio/yield.hpp
MAINTAINERCLEANFILES = \
$(srcdir)/Makefile.in

File diff suppressed because it is too large Load Diff

View File

@ -1,182 +0,0 @@
//
// asio.hpp
// ~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_HPP
#define ASIO_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/associated_allocator.hpp"
#include "asio/associated_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/awaitable.hpp"
#include "asio/basic_datagram_socket.hpp"
#include "asio/basic_deadline_timer.hpp"
#include "asio/basic_io_object.hpp"
#include "asio/basic_raw_socket.hpp"
#include "asio/basic_seq_packet_socket.hpp"
#include "asio/basic_serial_port.hpp"
#include "asio/basic_signal_set.hpp"
#include "asio/basic_socket.hpp"
#include "asio/basic_socket_acceptor.hpp"
#include "asio/basic_socket_iostream.hpp"
#include "asio/basic_socket_streambuf.hpp"
#include "asio/basic_stream_socket.hpp"
#include "asio/basic_streambuf.hpp"
#include "asio/basic_waitable_timer.hpp"
#include "asio/bind_executor.hpp"
#include "asio/buffer.hpp"
#include "asio/buffered_read_stream_fwd.hpp"
#include "asio/buffered_read_stream.hpp"
#include "asio/buffered_stream_fwd.hpp"
#include "asio/buffered_stream.hpp"
#include "asio/buffered_write_stream_fwd.hpp"
#include "asio/buffered_write_stream.hpp"
#include "asio/buffers_iterator.hpp"
#include "asio/co_spawn.hpp"
#include "asio/completion_condition.hpp"
#include "asio/compose.hpp"
#include "asio/connect.hpp"
#include "asio/coroutine.hpp"
#include "asio/deadline_timer.hpp"
#include "asio/defer.hpp"
#include "asio/detached.hpp"
#include "asio/dispatch.hpp"
#include "asio/error.hpp"
#include "asio/error_code.hpp"
#include "asio/execution.hpp"
#include "asio/execution/allocator.hpp"
#include "asio/execution/any_executor.hpp"
#include "asio/execution/blocking.hpp"
#include "asio/execution/blocking_adaptation.hpp"
#include "asio/execution/bulk_execute.hpp"
#include "asio/execution/bulk_guarantee.hpp"
#include "asio/execution/connect.hpp"
#include "asio/execution/context.hpp"
#include "asio/execution/context_as.hpp"
#include "asio/execution/execute.hpp"
#include "asio/execution/executor.hpp"
#include "asio/execution/invocable_archetype.hpp"
#include "asio/execution/mapping.hpp"
#include "asio/execution/occupancy.hpp"
#include "asio/execution/operation_state.hpp"
#include "asio/execution/outstanding_work.hpp"
#include "asio/execution/prefer_only.hpp"
#include "asio/execution/receiver.hpp"
#include "asio/execution/receiver_invocation_error.hpp"
#include "asio/execution/relationship.hpp"
#include "asio/execution/schedule.hpp"
#include "asio/execution/scheduler.hpp"
#include "asio/execution/sender.hpp"
#include "asio/execution/set_done.hpp"
#include "asio/execution/set_error.hpp"
#include "asio/execution/set_value.hpp"
#include "asio/execution/start.hpp"
#include "asio/execution_context.hpp"
#include "asio/executor.hpp"
#include "asio/executor_work_guard.hpp"
#include "asio/generic/basic_endpoint.hpp"
#include "asio/generic/datagram_protocol.hpp"
#include "asio/generic/raw_protocol.hpp"
#include "asio/generic/seq_packet_protocol.hpp"
#include "asio/generic/stream_protocol.hpp"
#include "asio/handler_alloc_hook.hpp"
#include "asio/handler_continuation_hook.hpp"
#include "asio/handler_invoke_hook.hpp"
#include "asio/high_resolution_timer.hpp"
#include "asio/io_context.hpp"
#include "asio/io_context_strand.hpp"
#include "asio/io_service.hpp"
#include "asio/io_service_strand.hpp"
#include "asio/ip/address.hpp"
#include "asio/ip/address_v4.hpp"
#include "asio/ip/address_v4_iterator.hpp"
#include "asio/ip/address_v4_range.hpp"
#include "asio/ip/address_v6.hpp"
#include "asio/ip/address_v6_iterator.hpp"
#include "asio/ip/address_v6_range.hpp"
#include "asio/ip/network_v4.hpp"
#include "asio/ip/network_v6.hpp"
#include "asio/ip/bad_address_cast.hpp"
#include "asio/ip/basic_endpoint.hpp"
#include "asio/ip/basic_resolver.hpp"
#include "asio/ip/basic_resolver_entry.hpp"
#include "asio/ip/basic_resolver_iterator.hpp"
#include "asio/ip/basic_resolver_query.hpp"
#include "asio/ip/host_name.hpp"
#include "asio/ip/icmp.hpp"
#include "asio/ip/multicast.hpp"
#include "asio/ip/resolver_base.hpp"
#include "asio/ip/resolver_query_base.hpp"
#include "asio/ip/tcp.hpp"
#include "asio/ip/udp.hpp"
#include "asio/ip/unicast.hpp"
#include "asio/ip/v6_only.hpp"
#include "asio/is_applicable_property.hpp"
#include "asio/is_executor.hpp"
#include "asio/is_read_buffered.hpp"
#include "asio/is_write_buffered.hpp"
#include "asio/local/basic_endpoint.hpp"
#include "asio/local/connect_pair.hpp"
#include "asio/local/datagram_protocol.hpp"
#include "asio/local/stream_protocol.hpp"
#include "asio/multiple_exceptions.hpp"
#include "asio/packaged_task.hpp"
#include "asio/placeholders.hpp"
#include "asio/posix/basic_descriptor.hpp"
#include "asio/posix/basic_stream_descriptor.hpp"
#include "asio/posix/descriptor.hpp"
#include "asio/posix/descriptor_base.hpp"
#include "asio/posix/stream_descriptor.hpp"
#include "asio/post.hpp"
#include "asio/prefer.hpp"
#include "asio/query.hpp"
#include "asio/read.hpp"
#include "asio/read_at.hpp"
#include "asio/read_until.hpp"
#include "asio/redirect_error.hpp"
#include "asio/require.hpp"
#include "asio/require_concept.hpp"
#include "asio/serial_port.hpp"
#include "asio/serial_port_base.hpp"
#include "asio/signal_set.hpp"
#include "asio/socket_base.hpp"
#include "asio/static_thread_pool.hpp"
#include "asio/steady_timer.hpp"
#include "asio/strand.hpp"
#include "asio/streambuf.hpp"
#include "asio/system_context.hpp"
#include "asio/system_error.hpp"
#include "asio/system_executor.hpp"
#include "asio/system_timer.hpp"
#include "asio/this_coro.hpp"
#include "asio/thread.hpp"
#include "asio/thread_pool.hpp"
#include "asio/time_traits.hpp"
#include "asio/use_awaitable.hpp"
#include "asio/use_future.hpp"
#include "asio/uses_executor.hpp"
#include "asio/version.hpp"
#include "asio/wait_traits.hpp"
#include "asio/windows/basic_object_handle.hpp"
#include "asio/windows/basic_overlapped_handle.hpp"
#include "asio/windows/basic_random_access_handle.hpp"
#include "asio/windows/basic_stream_handle.hpp"
#include "asio/windows/object_handle.hpp"
#include "asio/windows/overlapped_handle.hpp"
#include "asio/windows/overlapped_ptr.hpp"
#include "asio/windows/random_access_handle.hpp"
#include "asio/windows/stream_handle.hpp"
#include "asio/write.hpp"
#include "asio/write_at.hpp"
#endif // ASIO_HPP

View File

@ -1,300 +0,0 @@
//
// any_io_executor.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_ANY_IO_EXECUTOR_HPP
#define ASIO_ANY_IO_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
# include "asio/executor.hpp"
#else // defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
# include "asio/execution.hpp"
# include "asio/execution_context.hpp"
#endif // defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
#include "asio/detail/push_options.hpp"
namespace asio {
#if defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
typedef executor any_io_executor;
#else // defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
/// Polymorphic executor type for use with I/O objects.
/**
* The @c any_io_executor type is a polymorphic executor that supports the set
* of properties required by I/O objects. It is defined as the
* execution::any_executor class template parameterised as follows:
* @code execution::any_executor<
* execution::context_as_t<execution_context&>,
* execution::blocking_t::never_t,
* execution::prefer_only<execution::blocking_t::possibly_t>,
* execution::prefer_only<execution::outstanding_work_t::tracked_t>,
* execution::prefer_only<execution::outstanding_work_t::untracked_t>,
* execution::prefer_only<execution::relationship_t::fork_t>,
* execution::prefer_only<execution::relationship_t::continuation_t>
* > @endcode
*/
class any_io_executor :
#if defined(GENERATING_DOCUMENTATION)
public execution::any_executor<...>
#else // defined(GENERATING_DOCUMENTATION)
public execution::any_executor<
execution::context_as_t<execution_context&>,
execution::blocking_t::never_t,
execution::prefer_only<execution::blocking_t::possibly_t>,
execution::prefer_only<execution::outstanding_work_t::tracked_t>,
execution::prefer_only<execution::outstanding_work_t::untracked_t>,
execution::prefer_only<execution::relationship_t::fork_t>,
execution::prefer_only<execution::relationship_t::continuation_t>
>
#endif // defined(GENERATING_DOCUMENTATION)
{
public:
#if !defined(GENERATING_DOCUMENTATION)
typedef execution::any_executor<
execution::context_as_t<execution_context&>,
execution::blocking_t::never_t,
execution::prefer_only<execution::blocking_t::possibly_t>,
execution::prefer_only<execution::outstanding_work_t::tracked_t>,
execution::prefer_only<execution::outstanding_work_t::untracked_t>,
execution::prefer_only<execution::relationship_t::fork_t>,
execution::prefer_only<execution::relationship_t::continuation_t>
> base_type;
typedef void supportable_properties_type(
execution::context_as_t<execution_context&>,
execution::blocking_t::never_t,
execution::prefer_only<execution::blocking_t::possibly_t>,
execution::prefer_only<execution::outstanding_work_t::tracked_t>,
execution::prefer_only<execution::outstanding_work_t::untracked_t>,
execution::prefer_only<execution::relationship_t::fork_t>,
execution::prefer_only<execution::relationship_t::continuation_t>
);
#endif // !defined(GENERATING_DOCUMENTATION)
/// Default constructor.
any_io_executor() ASIO_NOEXCEPT
: base_type()
{
}
/// Construct in an empty state. Equivalent effects to default constructor.
any_io_executor(nullptr_t) ASIO_NOEXCEPT
: base_type(nullptr_t())
{
}
/// Copy constructor.
any_io_executor(const any_io_executor& e) ASIO_NOEXCEPT
: base_type(static_cast<const base_type&>(e))
{
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move constructor.
any_io_executor(any_io_executor&& e) ASIO_NOEXCEPT
: base_type(static_cast<base_type&&>(e))
{
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Construct to point to the same target as another any_executor.
#if defined(GENERATING_DOCUMENTATION)
template <class... OtherSupportableProperties>
any_io_executor(execution::any_executor<OtherSupportableProperties...> e);
#else // defined(GENERATING_DOCUMENTATION)
template <typename OtherAnyExecutor>
any_io_executor(OtherAnyExecutor e,
typename constraint<
conditional<
!is_same<OtherAnyExecutor, any_io_executor>::value
&& is_base_of<execution::detail::any_executor_base,
OtherAnyExecutor>::value,
typename execution::detail::supportable_properties<
0, supportable_properties_type>::template
is_valid_target<OtherAnyExecutor>,
false_type
>::type::value
>::type = 0)
: base_type(ASIO_MOVE_CAST(OtherAnyExecutor)(e))
{
}
#endif // defined(GENERATING_DOCUMENTATION)
/// Construct a polymorphic wrapper for the specified executor.
#if defined(GENERATING_DOCUMENTATION)
template <ASIO_EXECUTION_EXECUTOR Executor>
any_io_executor(Executor e);
#else // defined(GENERATING_DOCUMENTATION)
template <ASIO_EXECUTION_EXECUTOR Executor>
any_io_executor(Executor e,
typename constraint<
conditional<
!is_same<Executor, any_io_executor>::value
&& !is_base_of<execution::detail::any_executor_base,
Executor>::value,
execution::detail::is_valid_target_executor<
Executor, supportable_properties_type>,
false_type
>::type::value
>::type = 0)
: base_type(ASIO_MOVE_CAST(Executor)(e))
{
}
#endif // defined(GENERATING_DOCUMENTATION)
/// Assignment operator.
any_io_executor& operator=(const any_io_executor& e) ASIO_NOEXCEPT
{
base_type::operator=(static_cast<const base_type&>(e));
return *this;
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move assignment operator.
any_io_executor& operator=(any_io_executor&& e) ASIO_NOEXCEPT
{
base_type::operator=(static_cast<base_type&&>(e));
return *this;
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Assignment operator that sets the polymorphic wrapper to the empty state.
any_io_executor& operator=(nullptr_t)
{
base_type::operator=(nullptr_t());
return *this;
}
/// Destructor.
~any_io_executor()
{
}
/// Swap targets with another polymorphic wrapper.
void swap(any_io_executor& other) ASIO_NOEXCEPT
{
static_cast<base_type&>(*this).swap(static_cast<base_type&>(other));
}
/// Obtain a polymorphic wrapper with the specified property.
/**
* Do not call this function directly. It is intended for use with the
* asio::require and asio::prefer customisation points.
*
* For example:
* @code any_io_executor ex = ...;
* auto ex2 = asio::require(ex, execution::blocking.possibly); @endcode
*/
template <typename Property>
any_io_executor require(const Property& p,
typename constraint<
traits::require_member<const base_type&, const Property&>::is_valid
>::type = 0) const
{
return static_cast<const base_type&>(*this).require(p);
}
/// Obtain a polymorphic wrapper with the specified property.
/**
* Do not call this function directly. It is intended for use with the
* asio::prefer customisation point.
*
* For example:
* @code any_io_executor ex = ...;
* auto ex2 = asio::prefer(ex, execution::blocking.possibly); @endcode
*/
template <typename Property>
any_io_executor prefer(const Property& p,
typename constraint<
traits::prefer_member<const base_type&, const Property&>::is_valid
>::type = 0) const
{
return static_cast<const base_type&>(*this).prefer(p);
}
};
#if !defined(GENERATING_DOCUMENTATION)
namespace traits {
#if !defined(ASIO_HAS_DEDUCED_EQUALITY_COMPARABLE_TRAIT)
template <>
struct equality_comparable<any_io_executor>
{
static const bool is_valid = true;
static const bool is_noexcept = true;
};
#endif // !defined(ASIO_HAS_DEDUCED_EQUALITY_COMPARABLE_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_EXECUTE_MEMBER_TRAIT)
template <typename F>
struct execute_member<any_io_executor, F>
{
static const bool is_valid = true;
static const bool is_noexcept = false;
typedef void result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_EXECUTE_MEMBER_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_QUERY_MEMBER_TRAIT)
template <typename Prop>
struct query_member<any_io_executor, Prop> :
query_member<any_io_executor::base_type, Prop>
{
};
#endif // !defined(ASIO_HAS_DEDUCED_QUERY_MEMBER_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_REQUIRE_MEMBER_TRAIT)
template <typename Prop>
struct require_member<any_io_executor, Prop> :
require_member<any_io_executor::base_type, Prop>
{
typedef any_io_executor result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_REQUIRE_MEMBER_TRAIT)
#if !defined(ASIO_HAS_DEDUCED_PREFER_MEMBER_TRAIT)
template <typename Prop>
struct prefer_member<any_io_executor, Prop> :
prefer_member<any_io_executor::base_type, Prop>
{
typedef any_io_executor result_type;
};
#endif // !defined(ASIO_HAS_DEDUCED_PREFER_MEMBER_TRAIT)
} // namespace traits
#endif // !defined(GENERATING_DOCUMENTATION)
#endif // defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_ANY_IO_EXECUTOR_HPP

View File

@ -1,125 +0,0 @@
//
// associated_allocator.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_ASSOCIATED_ALLOCATOR_HPP
#define ASIO_ASSOCIATED_ALLOCATOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <memory>
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename T, typename E, typename = void>
struct associated_allocator_impl
{
typedef E type;
static type get(const T&, const E& e) ASIO_NOEXCEPT
{
return e;
}
};
template <typename T, typename E>
struct associated_allocator_impl<T, E,
typename void_type<typename T::allocator_type>::type>
{
typedef typename T::allocator_type type;
static type get(const T& t, const E&) ASIO_NOEXCEPT
{
return t.get_allocator();
}
};
} // namespace detail
/// Traits type used to obtain the allocator associated with an object.
/**
* A program may specialise this traits type if the @c T template parameter in
* the specialisation is a user-defined type. The template parameter @c
* Allocator shall be a type meeting the Allocator requirements.
*
* Specialisations shall meet the following requirements, where @c t is a const
* reference to an object of type @c T, and @c a is an object of type @c
* Allocator.
*
* @li Provide a nested typedef @c type that identifies a type meeting the
* Allocator requirements.
*
* @li Provide a noexcept static member function named @c get, callable as @c
* get(t) and with return type @c type.
*
* @li Provide a noexcept static member function named @c get, callable as @c
* get(t,a) and with return type @c type.
*/
template <typename T, typename Allocator = std::allocator<void> >
struct associated_allocator
{
/// If @c T has a nested type @c allocator_type, <tt>T::allocator_type</tt>.
/// Otherwise @c Allocator.
#if defined(GENERATING_DOCUMENTATION)
typedef see_below type;
#else // defined(GENERATING_DOCUMENTATION)
typedef typename detail::associated_allocator_impl<T, Allocator>::type type;
#endif // defined(GENERATING_DOCUMENTATION)
/// If @c T has a nested type @c allocator_type, returns
/// <tt>t.get_allocator()</tt>. Otherwise returns @c a.
static type get(const T& t,
const Allocator& a = Allocator()) ASIO_NOEXCEPT
{
return detail::associated_allocator_impl<T, Allocator>::get(t, a);
}
};
/// Helper function to obtain an object's associated allocator.
/**
* @returns <tt>associated_allocator<T>::get(t)</tt>
*/
template <typename T>
inline typename associated_allocator<T>::type
get_associated_allocator(const T& t) ASIO_NOEXCEPT
{
return associated_allocator<T>::get(t);
}
/// Helper function to obtain an object's associated allocator.
/**
* @returns <tt>associated_allocator<T, Allocator>::get(t, a)</tt>
*/
template <typename T, typename Allocator>
inline typename associated_allocator<T, Allocator>::type
get_associated_allocator(const T& t, const Allocator& a) ASIO_NOEXCEPT
{
return associated_allocator<T, Allocator>::get(t, a);
}
#if defined(ASIO_HAS_ALIAS_TEMPLATES)
template <typename T, typename Allocator = std::allocator<void> >
using associated_allocator_t
= typename associated_allocator<T, Allocator>::type;
#endif // defined(ASIO_HAS_ALIAS_TEMPLATES)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_ASSOCIATED_ALLOCATOR_HPP

View File

@ -1,166 +0,0 @@
//
// associated_executor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_ASSOCIATED_EXECUTOR_HPP
#define ASIO_ASSOCIATED_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/execution/executor.hpp"
#include "asio/is_executor.hpp"
#include "asio/system_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename T, typename E, typename = void>
struct associated_executor_impl
{
typedef void asio_associated_executor_is_unspecialised;
typedef E type;
static type get(const T&, const E& e = E()) ASIO_NOEXCEPT
{
return e;
}
};
template <typename T, typename E>
struct associated_executor_impl<T, E,
typename void_type<typename T::executor_type>::type>
{
typedef typename T::executor_type type;
static type get(const T& t, const E& = E()) ASIO_NOEXCEPT
{
return t.get_executor();
}
};
} // namespace detail
/// Traits type used to obtain the executor associated with an object.
/**
* A program may specialise this traits type if the @c T template parameter in
* the specialisation is a user-defined type. The template parameter @c
* Executor shall be a type meeting the Executor requirements.
*
* Specialisations shall meet the following requirements, where @c t is a const
* reference to an object of type @c T, and @c e is an object of type @c
* Executor.
*
* @li Provide a nested typedef @c type that identifies a type meeting the
* Executor requirements.
*
* @li Provide a noexcept static member function named @c get, callable as @c
* get(t) and with return type @c type.
*
* @li Provide a noexcept static member function named @c get, callable as @c
* get(t,e) and with return type @c type.
*/
template <typename T, typename Executor = system_executor>
struct associated_executor
#if !defined(GENERATING_DOCUMENTATION)
: detail::associated_executor_impl<T, Executor>
#endif // !defined(GENERATING_DOCUMENTATION)
{
#if defined(GENERATING_DOCUMENTATION)
/// If @c T has a nested type @c executor_type, <tt>T::executor_type</tt>.
/// Otherwise @c Executor.
typedef see_below type;
/// If @c T has a nested type @c executor_type, returns
/// <tt>t.get_executor()</tt>. Otherwise returns @c ex.
static type get(const T& t,
const Executor& ex = Executor()) ASIO_NOEXCEPT;
#endif // defined(GENERATING_DOCUMENTATION)
};
/// Helper function to obtain an object's associated executor.
/**
* @returns <tt>associated_executor<T>::get(t)</tt>
*/
template <typename T>
inline typename associated_executor<T>::type
get_associated_executor(const T& t) ASIO_NOEXCEPT
{
return associated_executor<T>::get(t);
}
/// Helper function to obtain an object's associated executor.
/**
* @returns <tt>associated_executor<T, Executor>::get(t, ex)</tt>
*/
template <typename T, typename Executor>
inline typename associated_executor<T, Executor>::type
get_associated_executor(const T& t, const Executor& ex,
typename constraint<
is_executor<Executor>::value || execution::is_executor<Executor>::value
>::type = 0) ASIO_NOEXCEPT
{
return associated_executor<T, Executor>::get(t, ex);
}
/// Helper function to obtain an object's associated executor.
/**
* @returns <tt>associated_executor<T, typename
* ExecutionContext::executor_type>::get(t, ctx.get_executor())</tt>
*/
template <typename T, typename ExecutionContext>
inline typename associated_executor<T,
typename ExecutionContext::executor_type>::type
get_associated_executor(const T& t, ExecutionContext& ctx,
typename constraint<is_convertible<ExecutionContext&,
execution_context&>::value>::type = 0) ASIO_NOEXCEPT
{
return associated_executor<T,
typename ExecutionContext::executor_type>::get(t, ctx.get_executor());
}
#if defined(ASIO_HAS_ALIAS_TEMPLATES)
template <typename T, typename Executor = system_executor>
using associated_executor_t = typename associated_executor<T, Executor>::type;
#endif // defined(ASIO_HAS_ALIAS_TEMPLATES)
namespace detail {
template <typename T, typename E, typename = void>
struct associated_executor_forwarding_base
{
};
template <typename T, typename E>
struct associated_executor_forwarding_base<T, E,
typename enable_if<
is_same<
typename associated_executor<T,
E>::asio_associated_executor_is_unspecialised,
void
>::value
>::type>
{
typedef void asio_associated_executor_is_unspecialised;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_ASSOCIATED_EXECUTOR_HPP

View File

@ -1,582 +0,0 @@
//
// async_result.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_ASYNC_RESULT_HPP
#define ASIO_ASYNC_RESULT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/variadic_templates.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if defined(ASIO_HAS_CONCEPTS) \
&& defined(ASIO_HAS_VARIADIC_TEMPLATES) \
&& defined(ASIO_HAS_DECLTYPE)
namespace detail {
template <typename T>
struct is_completion_signature : false_type
{
};
template <typename R, typename... Args>
struct is_completion_signature<R(Args...)> : true_type
{
};
template <typename T, typename... Args>
ASIO_CONCEPT callable_with = requires(T t, Args&&... args)
{
t(static_cast<Args&&>(args)...);
};
template <typename T, typename Signature>
struct is_completion_handler_for : false_type
{
};
template <typename T, typename R, typename... Args>
struct is_completion_handler_for<T, R(Args...)>
: integral_constant<bool, (callable_with<T, Args...>)>
{
};
} // namespace detail
template <typename T>
ASIO_CONCEPT completion_signature =
detail::is_completion_signature<T>::value;
#define ASIO_COMPLETION_SIGNATURE \
::asio::completion_signature
template <typename T, typename Signature>
ASIO_CONCEPT completion_handler_for =
detail::is_completion_signature<Signature>::value
&& detail::is_completion_handler_for<T, Signature>::value;
#define ASIO_COMPLETION_HANDLER_FOR(s) \
::asio::completion_handler_for<s>
#else // defined(ASIO_HAS_CONCEPTS)
// && defined(ASIO_HAS_VARIADIC_TEMPLATES)
// && defined(ASIO_HAS_DECLTYPE)
#define ASIO_COMPLETION_SIGNATURE typename
#define ASIO_COMPLETION_HANDLER_FOR(s) typename
#endif // defined(ASIO_HAS_CONCEPTS)
// && defined(ASIO_HAS_VARIADIC_TEMPLATES)
// && defined(ASIO_HAS_DECLTYPE)
/// An interface for customising the behaviour of an initiating function.
/**
* The async_result traits class is used for determining:
*
* @li the concrete completion handler type to be called at the end of the
* asynchronous operation;
*
* @li the initiating function return type; and
*
* @li how the return value of the initiating function is obtained.
*
* The trait allows the handler and return types to be determined at the point
* where the specific completion handler signature is known.
*
* This template may be specialised for user-defined completion token types.
* The primary template assumes that the CompletionToken is the completion
* handler.
*/
template <typename CompletionToken, ASIO_COMPLETION_SIGNATURE Signature>
class async_result
{
public:
/// The concrete completion handler type for the specific signature.
typedef CompletionToken completion_handler_type;
/// The return type of the initiating function.
typedef void return_type;
/// Construct an async result from a given handler.
/**
* When using a specalised async_result, the constructor has an opportunity
* to initialise some state associated with the completion handler, which is
* then returned from the initiating function.
*/
explicit async_result(completion_handler_type& h)
{
(void)h;
}
/// Obtain the value to be returned from the initiating function.
return_type get()
{
}
#if defined(GENERATING_DOCUMENTATION)
/// Initiate the asynchronous operation that will produce the result, and
/// obtain the value to be returned from the initiating function.
template <typename Initiation, typename RawCompletionToken, typename... Args>
static return_type initiate(
ASIO_MOVE_ARG(Initiation) initiation,
ASIO_MOVE_ARG(RawCompletionToken) token,
ASIO_MOVE_ARG(Args)... args);
#elif defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename Initiation,
ASIO_COMPLETION_HANDLER_FOR(Signature) RawCompletionToken,
typename... Args>
static return_type initiate(
ASIO_MOVE_ARG(Initiation) initiation,
ASIO_MOVE_ARG(RawCompletionToken) token,
ASIO_MOVE_ARG(Args)... args)
{
ASIO_MOVE_CAST(Initiation)(initiation)(
ASIO_MOVE_CAST(RawCompletionToken)(token),
ASIO_MOVE_CAST(Args)(args)...);
}
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename Initiation,
ASIO_COMPLETION_HANDLER_FOR(Signature) RawCompletionToken>
static return_type initiate(
ASIO_MOVE_ARG(Initiation) initiation,
ASIO_MOVE_ARG(RawCompletionToken) token)
{
ASIO_MOVE_CAST(Initiation)(initiation)(
ASIO_MOVE_CAST(RawCompletionToken)(token));
}
#define ASIO_PRIVATE_INITIATE_DEF(n) \
template <typename Initiation, \
ASIO_COMPLETION_HANDLER_FOR(Signature) RawCompletionToken, \
ASIO_VARIADIC_TPARAMS(n)> \
static return_type initiate( \
ASIO_MOVE_ARG(Initiation) initiation, \
ASIO_MOVE_ARG(RawCompletionToken) token, \
ASIO_VARIADIC_MOVE_PARAMS(n)) \
{ \
ASIO_MOVE_CAST(Initiation)(initiation)( \
ASIO_MOVE_CAST(RawCompletionToken)(token), \
ASIO_VARIADIC_MOVE_ARGS(n)); \
} \
/**/
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_INITIATE_DEF)
#undef ASIO_PRIVATE_INITIATE_DEF
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
private:
async_result(const async_result&) ASIO_DELETED;
async_result& operator=(const async_result&) ASIO_DELETED;
};
#if !defined(GENERATING_DOCUMENTATION)
template <ASIO_COMPLETION_SIGNATURE Signature>
class async_result<void, Signature>
{
// Empty.
};
#endif // !defined(GENERATING_DOCUMENTATION)
/// Helper template to deduce the handler type from a CompletionToken, capture
/// a local copy of the handler, and then create an async_result for the
/// handler.
template <typename CompletionToken, ASIO_COMPLETION_SIGNATURE Signature>
struct async_completion
{
/// The real handler type to be used for the asynchronous operation.
typedef typename asio::async_result<
typename decay<CompletionToken>::type,
Signature>::completion_handler_type completion_handler_type;
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Constructor.
/**
* The constructor creates the concrete completion handler and makes the link
* between the handler and the asynchronous result.
*/
explicit async_completion(CompletionToken& token)
: completion_handler(static_cast<typename conditional<
is_same<CompletionToken, completion_handler_type>::value,
completion_handler_type&, CompletionToken&&>::type>(token)),
result(completion_handler)
{
}
#else // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
explicit async_completion(typename decay<CompletionToken>::type& token)
: completion_handler(token),
result(completion_handler)
{
}
explicit async_completion(const typename decay<CompletionToken>::type& token)
: completion_handler(token),
result(completion_handler)
{
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// A copy of, or reference to, a real handler object.
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
typename conditional<
is_same<CompletionToken, completion_handler_type>::value,
completion_handler_type&, completion_handler_type>::type completion_handler;
#else // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
completion_handler_type completion_handler;
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// The result of the asynchronous operation's initiating function.
async_result<typename decay<CompletionToken>::type, Signature> result;
};
namespace detail {
template <typename CompletionToken, typename Signature>
struct async_result_helper
: async_result<typename decay<CompletionToken>::type, Signature>
{
};
struct async_result_memfns_base
{
void initiate();
};
template <typename T>
struct async_result_memfns_derived
: T, async_result_memfns_base
{
};
template <typename T, T>
struct async_result_memfns_check
{
};
template <typename>
char (&async_result_initiate_memfn_helper(...))[2];
template <typename T>
char async_result_initiate_memfn_helper(
async_result_memfns_check<
void (async_result_memfns_base::*)(),
&async_result_memfns_derived<T>::initiate>*);
template <typename CompletionToken, typename Signature>
struct async_result_has_initiate_memfn
: integral_constant<bool, sizeof(async_result_initiate_memfn_helper<
async_result<typename decay<CompletionToken>::type, Signature>
>(0)) != 1>
{
};
} // namespace detail
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_RESULT_TYPE(ct, sig) \
void_or_deduced
#elif defined(_MSC_VER) && (_MSC_VER < 1500)
# define ASIO_INITFN_RESULT_TYPE(ct, sig) \
typename ::asio::detail::async_result_helper< \
ct, sig>::return_type
#define ASIO_HANDLER_TYPE(ct, sig) \
typename ::asio::detail::async_result_helper< \
ct, sig>::completion_handler_type
#else
# define ASIO_INITFN_RESULT_TYPE(ct, sig) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, sig>::return_type
#define ASIO_HANDLER_TYPE(ct, sig) \
typename ::asio::async_result< \
typename ::asio::decay<ct>::type, sig>::completion_handler_type
#endif
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_AUTO_RESULT_TYPE(ct, sig) \
auto
#elif defined(ASIO_HAS_RETURN_TYPE_DEDUCTION)
# define ASIO_INITFN_AUTO_RESULT_TYPE(ct, sig) \
auto
#else
# define ASIO_INITFN_AUTO_RESULT_TYPE(ct, sig) \
ASIO_INITFN_RESULT_TYPE(ct, sig)
#endif
#if defined(GENERATING_DOCUMENTATION)
# define ASIO_INITFN_DEDUCED_RESULT_TYPE(ct, sig, expr) \
void_or_deduced
#elif defined(ASIO_HAS_DECLTYPE)
# define ASIO_INITFN_DEDUCED_RESULT_TYPE(ct, sig, expr) \
decltype expr
#else
# define ASIO_INITFN_DEDUCED_RESULT_TYPE(ct, sig, expr) \
ASIO_INITFN_RESULT_TYPE(ct, sig)
#endif
#if defined(GENERATING_DOCUMENTATION)
template <typename CompletionToken,
completion_signature Signature,
typename Initiation, typename... Args>
void_or_deduced async_initiate(
ASIO_MOVE_ARG(Initiation) initiation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken),
ASIO_MOVE_ARG(Args)... args);
#elif defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE Signature,
typename Initiation, typename... Args>
inline typename constraint<
detail::async_result_has_initiate_memfn<CompletionToken, Signature>::value,
ASIO_INITFN_DEDUCED_RESULT_TYPE(CompletionToken, Signature,
(async_result<typename decay<CompletionToken>::type,
Signature>::initiate(declval<ASIO_MOVE_ARG(Initiation)>(),
declval<ASIO_MOVE_ARG(CompletionToken)>(),
declval<ASIO_MOVE_ARG(Args)>()...)))>::type
async_initiate(ASIO_MOVE_ARG(Initiation) initiation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token,
ASIO_MOVE_ARG(Args)... args)
{
return async_result<typename decay<CompletionToken>::type,
Signature>::initiate(ASIO_MOVE_CAST(Initiation)(initiation),
ASIO_MOVE_CAST(CompletionToken)(token),
ASIO_MOVE_CAST(Args)(args)...);
}
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE Signature,
typename Initiation, typename... Args>
inline typename constraint<
!detail::async_result_has_initiate_memfn<CompletionToken, Signature>::value,
ASIO_INITFN_RESULT_TYPE(CompletionToken, Signature)>::type
async_initiate(ASIO_MOVE_ARG(Initiation) initiation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token,
ASIO_MOVE_ARG(Args)... args)
{
async_completion<CompletionToken, Signature> completion(token);
ASIO_MOVE_CAST(Initiation)(initiation)(
ASIO_MOVE_CAST(ASIO_HANDLER_TYPE(CompletionToken,
Signature))(completion.completion_handler),
ASIO_MOVE_CAST(Args)(args)...);
return completion.result.get();
}
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE Signature,
typename Initiation>
inline typename constraint<
detail::async_result_has_initiate_memfn<CompletionToken, Signature>::value,
ASIO_INITFN_DEDUCED_RESULT_TYPE(CompletionToken, Signature,
(async_result<typename decay<CompletionToken>::type,
Signature>::initiate(declval<ASIO_MOVE_ARG(Initiation)>(),
declval<ASIO_MOVE_ARG(CompletionToken)>())))>::type
async_initiate(ASIO_MOVE_ARG(Initiation) initiation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token)
{
return async_result<typename decay<CompletionToken>::type,
Signature>::initiate(ASIO_MOVE_CAST(Initiation)(initiation),
ASIO_MOVE_CAST(CompletionToken)(token));
}
template <typename CompletionToken,
ASIO_COMPLETION_SIGNATURE Signature,
typename Initiation>
inline typename constraint<
!detail::async_result_has_initiate_memfn<CompletionToken, Signature>::value,
ASIO_INITFN_RESULT_TYPE(CompletionToken, Signature)>::type
async_initiate(ASIO_MOVE_ARG(Initiation) initiation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token)
{
async_completion<CompletionToken, Signature> completion(token);
ASIO_MOVE_CAST(Initiation)(initiation)(
ASIO_MOVE_CAST(ASIO_HANDLER_TYPE(CompletionToken,
Signature))(completion.completion_handler));
return completion.result.get();
}
#define ASIO_PRIVATE_INITIATE_DEF(n) \
template <typename CompletionToken, \
ASIO_COMPLETION_SIGNATURE Signature, \
typename Initiation, ASIO_VARIADIC_TPARAMS(n)> \
inline typename constraint< \
detail::async_result_has_initiate_memfn< \
CompletionToken, Signature>::value, \
ASIO_INITFN_DEDUCED_RESULT_TYPE(CompletionToken, Signature, \
(async_result<typename decay<CompletionToken>::type, \
Signature>::initiate(declval<ASIO_MOVE_ARG(Initiation)>(), \
declval<ASIO_MOVE_ARG(CompletionToken)>(), \
ASIO_VARIADIC_MOVE_DECLVAL(n))))>::type \
async_initiate(ASIO_MOVE_ARG(Initiation) initiation, \
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token, \
ASIO_VARIADIC_MOVE_PARAMS(n)) \
{ \
return async_result<typename decay<CompletionToken>::type, \
Signature>::initiate(ASIO_MOVE_CAST(Initiation)(initiation), \
ASIO_MOVE_CAST(CompletionToken)(token), \
ASIO_VARIADIC_MOVE_ARGS(n)); \
} \
\
template <typename CompletionToken, \
ASIO_COMPLETION_SIGNATURE Signature, \
typename Initiation, ASIO_VARIADIC_TPARAMS(n)> \
inline typename constraint< \
!detail::async_result_has_initiate_memfn< \
CompletionToken, Signature>::value, \
ASIO_INITFN_RESULT_TYPE(CompletionToken, Signature)>::type \
async_initiate(ASIO_MOVE_ARG(Initiation) initiation, \
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token, \
ASIO_VARIADIC_MOVE_PARAMS(n)) \
{ \
async_completion<CompletionToken, Signature> completion(token); \
\
ASIO_MOVE_CAST(Initiation)(initiation)( \
ASIO_MOVE_CAST(ASIO_HANDLER_TYPE(CompletionToken, \
Signature))(completion.completion_handler), \
ASIO_VARIADIC_MOVE_ARGS(n)); \
\
return completion.result.get(); \
} \
/**/
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_INITIATE_DEF)
#undef ASIO_PRIVATE_INITIATE_DEF
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
#if defined(ASIO_HAS_CONCEPTS) \
&& defined(ASIO_HAS_VARIADIC_TEMPLATES) \
&& defined(ASIO_HAS_DECLTYPE)
namespace detail {
template <typename Signature>
struct initiation_archetype
{
template <completion_handler_for<Signature> CompletionHandler>
void operator()(CompletionHandler&&) const
{
}
};
} // namespace detail
template <typename T, typename Signature>
ASIO_CONCEPT completion_token_for =
detail::is_completion_signature<Signature>::value
&&
requires(T&& t)
{
async_initiate<T, Signature>(detail::initiation_archetype<Signature>{}, t);
};
#define ASIO_COMPLETION_TOKEN_FOR(s) \
::asio::completion_token_for<s>
#else // defined(ASIO_HAS_CONCEPTS)
// && defined(ASIO_HAS_VARIADIC_TEMPLATES)
// && defined(ASIO_HAS_DECLTYPE)
#define ASIO_COMPLETION_TOKEN_FOR(s) typename
#endif // defined(ASIO_HAS_CONCEPTS)
// && defined(ASIO_HAS_VARIADIC_TEMPLATES)
// && defined(ASIO_HAS_DECLTYPE)
namespace detail {
template <typename T, typename = void>
struct default_completion_token_impl
{
typedef void type;
};
template <typename T>
struct default_completion_token_impl<T,
typename void_type<typename T::default_completion_token_type>::type>
{
typedef typename T::default_completion_token_type type;
};
} // namespace detail
#if defined(GENERATING_DOCUMENTATION)
/// Traits type used to determine the default completion token type associated
/// with a type (such as an executor).
/**
* A program may specialise this traits type if the @c T template parameter in
* the specialisation is a user-defined type.
*
* Specialisations of this trait may provide a nested typedef @c type, which is
* a default-constructible completion token type.
*/
template <typename T>
struct default_completion_token
{
/// If @c T has a nested type @c default_completion_token_type,
/// <tt>T::default_completion_token_type</tt>. Otherwise the typedef @c type
/// is not defined.
typedef see_below type;
};
#else
template <typename T>
struct default_completion_token
: detail::default_completion_token_impl<T>
{
};
#endif
#if defined(ASIO_HAS_ALIAS_TEMPLATES)
template <typename T>
using default_completion_token_t = typename default_completion_token<T>::type;
#endif // defined(ASIO_HAS_ALIAS_TEMPLATES)
#if defined(ASIO_HAS_DEFAULT_FUNCTION_TEMPLATE_ARGUMENTS)
#define ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(e) \
= typename ::asio::default_completion_token<e>::type
#define ASIO_DEFAULT_COMPLETION_TOKEN(e) \
= typename ::asio::default_completion_token<e>::type()
#else // defined(ASIO_HAS_DEFAULT_FUNCTION_TEMPLATE_ARGUMENTS)
#define ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(e)
#define ASIO_DEFAULT_COMPLETION_TOKEN(e)
#endif // defined(ASIO_HAS_DEFAULT_FUNCTION_TEMPLATE_ARGUMENTS)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_ASYNC_RESULT_HPP

View File

@ -1,133 +0,0 @@
//
// awaitable.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_AWAITABLE_HPP
#define ASIO_AWAITABLE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_CO_AWAIT) || defined(GENERATING_DOCUMENTATION)
#if defined(ASIO_HAS_STD_COROUTINE)
# include <coroutine>
#else // defined(ASIO_HAS_STD_COROUTINE)
# include <experimental/coroutine>
#endif // defined(ASIO_HAS_STD_COROUTINE)
#include "asio/any_io_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
#if defined(ASIO_HAS_STD_COROUTINE)
using std::coroutine_handle;
using std::suspend_always;
#else // defined(ASIO_HAS_STD_COROUTINE)
using std::experimental::coroutine_handle;
using std::experimental::suspend_always;
#endif // defined(ASIO_HAS_STD_COROUTINE)
template <typename> class awaitable_thread;
template <typename, typename> class awaitable_frame;
} // namespace detail
/// The return type of a coroutine or asynchronous operation.
template <typename T, typename Executor = any_io_executor>
class awaitable
{
public:
/// The type of the awaited value.
typedef T value_type;
/// The executor type that will be used for the coroutine.
typedef Executor executor_type;
/// Default constructor.
constexpr awaitable() noexcept
: frame_(nullptr)
{
}
/// Move constructor.
awaitable(awaitable&& other) noexcept
: frame_(std::exchange(other.frame_, nullptr))
{
}
/// Destructor
~awaitable()
{
if (frame_)
frame_->destroy();
}
/// Checks if the awaitable refers to a future result.
bool valid() const noexcept
{
return !!frame_;
}
#if !defined(GENERATING_DOCUMENTATION)
// Support for co_await keyword.
bool await_ready() const noexcept
{
return false;
}
// Support for co_await keyword.
template <class U>
void await_suspend(
detail::coroutine_handle<detail::awaitable_frame<U, Executor>> h)
{
frame_->push_frame(&h.promise());
}
// Support for co_await keyword.
T await_resume()
{
return awaitable(static_cast<awaitable&&>(*this)).frame_->get();
}
#endif // !defined(GENERATING_DOCUMENTATION)
private:
template <typename> friend class detail::awaitable_thread;
template <typename, typename> friend class detail::awaitable_frame;
// Not copy constructible or copy assignable.
awaitable(const awaitable&) = delete;
awaitable& operator=(const awaitable&) = delete;
// Construct the awaitable from a coroutine's frame object.
explicit awaitable(detail::awaitable_frame<T, Executor>* a)
: frame_(a)
{
}
detail::awaitable_frame<T, Executor>* frame_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/awaitable.hpp"
#endif // defined(ASIO_HAS_CO_AWAIT) || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_AWAITABLE_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,693 +0,0 @@
//
// basic_deadline_timer.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_DEADLINE_TIMER_HPP
#define ASIO_BASIC_DEADLINE_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
|| defined(GENERATING_DOCUMENTATION)
#include <cstddef>
#include "asio/any_io_executor.hpp"
#include "asio/detail/deadline_timer_service.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/time_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides waitable timer functionality.
/**
* The basic_deadline_timer class template provides the ability to perform a
* blocking or asynchronous wait for a timer to expire.
*
* A deadline timer is always in one of two states: "expired" or "not expired".
* If the wait() or async_wait() function is called on an expired timer, the
* wait operation will complete immediately.
*
* Most applications will use the asio::deadline_timer typedef.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Examples
* Performing a blocking wait:
* @code
* // Construct a timer without setting an expiry time.
* asio::deadline_timer timer(my_context);
*
* // Set an expiry time relative to now.
* timer.expires_from_now(boost::posix_time::seconds(5));
*
* // Wait for the timer to expire.
* timer.wait();
* @endcode
*
* @par
* Performing an asynchronous wait:
* @code
* void handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Timer expired.
* }
* }
*
* ...
*
* // Construct a timer with an absolute expiry time.
* asio::deadline_timer timer(my_context,
* boost::posix_time::time_from_string("2005-12-07 23:59:59.000"));
*
* // Start an asynchronous wait.
* timer.async_wait(handler);
* @endcode
*
* @par Changing an active deadline_timer's expiry time
*
* Changing the expiry time of a timer while there are pending asynchronous
* waits causes those wait operations to be cancelled. To ensure that the action
* associated with the timer is performed only once, use something like this:
* used:
*
* @code
* void on_some_event()
* {
* if (my_timer.expires_from_now(seconds(5)) > 0)
* {
* // We managed to cancel the timer. Start new asynchronous wait.
* my_timer.async_wait(on_timeout);
* }
* else
* {
* // Too late, timer has already expired!
* }
* }
*
* void on_timeout(const asio::error_code& e)
* {
* if (e != asio::error::operation_aborted)
* {
* // Timer was not cancelled, take necessary action.
* }
* }
* @endcode
*
* @li The asio::basic_deadline_timer::expires_from_now() function
* cancels any pending asynchronous waits, and returns the number of
* asynchronous waits that were cancelled. If it returns 0 then you were too
* late and the wait handler has already been executed, or will soon be
* executed. If it returns 1 then the wait handler was successfully cancelled.
*
* @li If a wait handler is cancelled, the asio::error_code passed to
* it contains the value asio::error::operation_aborted.
*/
template <typename Time,
typename TimeTraits = asio::time_traits<Time>,
typename Executor = any_io_executor>
class basic_deadline_timer
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the timer type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The timer type when rebound to the specified executor.
typedef basic_deadline_timer<Time, TimeTraits, Executor1> other;
};
/// The time traits type.
typedef TimeTraits traits_type;
/// The time type.
typedef typename traits_type::time_type time_type;
/// The duration type.
typedef typename traits_type::duration_type duration_type;
/// Constructor.
/**
* This constructor creates a timer without setting an expiry time. The
* expires_at() or expires_from_now() functions must be called to set an
* expiry time before the timer can be waited on.
*
* @param ex The I/O executor that the timer will use, by default, to
* dispatch handlers for any asynchronous operations performed on the timer.
*/
explicit basic_deadline_timer(const executor_type& ex)
: impl_(0, ex)
{
}
/// Constructor.
/**
* This constructor creates a timer without setting an expiry time. The
* expires_at() or expires_from_now() functions must be called to set an
* expiry time before the timer can be waited on.
*
* @param context An execution context which provides the I/O executor that
* the timer will use, by default, to dispatch handlers for any asynchronous
* operations performed on the timer.
*/
template <typename ExecutionContext>
explicit basic_deadline_timer(ExecutionContext& context,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
}
/// Constructor to set a particular expiry time as an absolute time.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param ex The I/O executor that the timer will use, by default, to
* dispatch handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, expressed
* as an absolute time.
*/
basic_deadline_timer(const executor_type& ex, const time_type& expiry_time)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().expires_at(impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
}
/// Constructor to set a particular expiry time as an absolute time.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param context An execution context which provides the I/O executor that
* the timer will use, by default, to dispatch handlers for any asynchronous
* operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, expressed
* as an absolute time.
*/
template <typename ExecutionContext>
basic_deadline_timer(ExecutionContext& context, const time_type& expiry_time,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().expires_at(impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
}
/// Constructor to set a particular expiry time relative to now.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param ex The I/O executor that the timer will use, by default, to
* dispatch handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, relative to
* now.
*/
basic_deadline_timer(const executor_type& ex,
const duration_type& expiry_time)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().expires_from_now(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_from_now");
}
/// Constructor to set a particular expiry time relative to now.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param context An execution context which provides the I/O executor that
* the timer will use, by default, to dispatch handlers for any asynchronous
* operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, relative to
* now.
*/
template <typename ExecutionContext>
basic_deadline_timer(ExecutionContext& context,
const duration_type& expiry_time,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().expires_from_now(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_from_now");
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_deadline_timer from another.
/**
* This constructor moves a timer from one object to another.
*
* @param other The other basic_deadline_timer object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_deadline_timer(const executor_type&)
* constructor.
*/
basic_deadline_timer(basic_deadline_timer&& other)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_deadline_timer from another.
/**
* This assignment operator moves a timer from one object to another. Cancels
* any outstanding asynchronous operations associated with the target object.
*
* @param other The other basic_deadline_timer object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_deadline_timer(const executor_type&)
* constructor.
*/
basic_deadline_timer& operator=(basic_deadline_timer&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destroys the timer.
/**
* This function destroys the timer, cancelling any outstanding asynchronous
* wait operations associated with the timer as if by calling @c cancel.
*/
~basic_deadline_timer()
{
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return impl_.get_executor();
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel()
{
asio::error_code ec;
std::size_t s = impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
return s;
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel(asio::error_code& ec)
{
return impl_.get_service().cancel(impl_.get_implementation(), ec);
}
/// Cancels one asynchronous operation that is waiting on the timer.
/**
* This function forces the completion of one pending asynchronous wait
* operation against the timer. Handlers are cancelled in FIFO order. The
* handler for the cancelled operation will be invoked with the
* asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled. That is,
* either 0 or 1.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when cancel_one() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel_one()
{
asio::error_code ec;
std::size_t s = impl_.get_service().cancel_one(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel_one");
return s;
}
/// Cancels one asynchronous operation that is waiting on the timer.
/**
* This function forces the completion of one pending asynchronous wait
* operation against the timer. Handlers are cancelled in FIFO order. The
* handler for the cancelled operation will be invoked with the
* asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled. That is,
* either 0 or 1.
*
* @note If the timer has already expired when cancel_one() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel_one(asio::error_code& ec)
{
return impl_.get_service().cancel_one(impl_.get_implementation(), ec);
}
/// Get the timer's expiry time as an absolute time.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
time_type expires_at() const
{
return impl_.get_service().expires_at(impl_.get_implementation());
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_at() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_at(const time_type& expiry_time)
{
asio::error_code ec;
std::size_t s = impl_.get_service().expires_at(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
return s;
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when expires_at() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_at(const time_type& expiry_time,
asio::error_code& ec)
{
return impl_.get_service().expires_at(
impl_.get_implementation(), expiry_time, ec);
}
/// Get the timer's expiry time relative to now.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
duration_type expires_from_now() const
{
return impl_.get_service().expires_from_now(impl_.get_implementation());
}
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_from_now() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_from_now(const duration_type& expiry_time)
{
asio::error_code ec;
std::size_t s = impl_.get_service().expires_from_now(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_from_now");
return s;
}
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when expires_from_now() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_from_now(const duration_type& expiry_time,
asio::error_code& ec)
{
return impl_.get_service().expires_from_now(
impl_.get_implementation(), expiry_time, ec);
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @throws asio::system_error Thrown on failure.
*/
void wait()
{
asio::error_code ec;
impl_.get_service().wait(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "wait");
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @param ec Set to indicate what error occurred, if any.
*/
void wait(asio::error_code& ec)
{
impl_.get_service().wait(impl_.get_implementation(), ec);
}
/// Start an asynchronous wait on the timer.
/**
* This function may be used to initiate an asynchronous wait against the
* timer. It always returns immediately.
*
* For each call to async_wait(), the supplied handler will be called exactly
* once. The handler will be called when:
*
* @li The timer has expired.
*
* @li The timer was cancelled, in which case the handler is passed the error
* code asio::error::operation_aborted.
*
* @param handler The handler to be called when the timer expires. Copies
* will be made of the handler as required. The function signature of the
* handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
WaitHandler ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WaitHandler,
void (asio::error_code))
async_wait(
ASIO_MOVE_ARG(WaitHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<WaitHandler, void (asio::error_code)>(
initiate_async_wait(this), handler);
}
private:
// Disallow copying and assignment.
basic_deadline_timer(const basic_deadline_timer&) ASIO_DELETED;
basic_deadline_timer& operator=(
const basic_deadline_timer&) ASIO_DELETED;
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_deadline_timer* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename WaitHandler>
void operator()(ASIO_MOVE_ARG(WaitHandler) handler) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
detail::non_const_lvalue<WaitHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(),
handler2.value, self_->impl_.get_executor());
}
private:
basic_deadline_timer* self_;
};
detail::io_object_impl<
detail::deadline_timer_service<TimeTraits>, Executor> impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_BASIC_DEADLINE_TIMER_HPP

View File

@ -1,290 +0,0 @@
//
// basic_io_object.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_IO_OBJECT_HPP
#define ASIO_BASIC_IO_OBJECT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/io_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if defined(ASIO_HAS_MOVE)
namespace detail
{
// Type trait used to determine whether a service supports move.
template <typename IoObjectService>
class service_has_move
{
private:
typedef IoObjectService service_type;
typedef typename service_type::implementation_type implementation_type;
template <typename T, typename U>
static auto asio_service_has_move_eval(T* t, U* u)
-> decltype(t->move_construct(*u, *u), char());
static char (&asio_service_has_move_eval(...))[2];
public:
static const bool value =
sizeof(asio_service_has_move_eval(
static_cast<service_type*>(0),
static_cast<implementation_type*>(0))) == 1;
};
}
#endif // defined(ASIO_HAS_MOVE)
/// Base class for all I/O objects.
/**
* @note All I/O objects are non-copyable. However, when using C++0x, certain
* I/O objects do support move construction and move assignment.
*/
#if !defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
template <typename IoObjectService>
#else
template <typename IoObjectService,
bool Movable = detail::service_has_move<IoObjectService>::value>
#endif
class basic_io_object
{
public:
/// The type of the service that will be used to provide I/O operations.
typedef IoObjectService service_type;
/// The underlying implementation type of I/O object.
typedef typename service_type::implementation_type implementation_type;
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use get_executor().) Get the io_context associated with the
/// object.
/**
* This function may be used to obtain the io_context object that the I/O
* object uses to dispatch handlers for asynchronous operations.
*
* @return A reference to the io_context object that the I/O object will use
* to dispatch handlers. Ownership is not transferred to the caller.
*/
asio::io_context& get_io_context()
{
return service_.get_io_context();
}
/// (Deprecated: Use get_executor().) Get the io_context associated with the
/// object.
/**
* This function may be used to obtain the io_context object that the I/O
* object uses to dispatch handlers for asynchronous operations.
*
* @return A reference to the io_context object that the I/O object will use
* to dispatch handlers. Ownership is not transferred to the caller.
*/
asio::io_context& get_io_service()
{
return service_.get_io_context();
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// The type of the executor associated with the object.
typedef asio::io_context::executor_type executor_type;
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return service_.get_io_context().get_executor();
}
protected:
/// Construct a basic_io_object.
/**
* Performs:
* @code get_service().construct(get_implementation()); @endcode
*/
explicit basic_io_object(asio::io_context& io_context)
: service_(asio::use_service<IoObjectService>(io_context))
{
service_.construct(implementation_);
}
#if defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_io_object.
/**
* Performs:
* @code get_service().move_construct(
* get_implementation(), other.get_implementation()); @endcode
*
* @note Available only for services that support movability,
*/
basic_io_object(basic_io_object&& other);
/// Move-assign a basic_io_object.
/**
* Performs:
* @code get_service().move_assign(get_implementation(),
* other.get_service(), other.get_implementation()); @endcode
*
* @note Available only for services that support movability,
*/
basic_io_object& operator=(basic_io_object&& other);
/// Perform a converting move-construction of a basic_io_object.
template <typename IoObjectService1>
basic_io_object(IoObjectService1& other_service,
typename IoObjectService1::implementation_type& other_implementation);
#endif // defined(GENERATING_DOCUMENTATION)
/// Protected destructor to prevent deletion through this type.
/**
* Performs:
* @code get_service().destroy(get_implementation()); @endcode
*/
~basic_io_object()
{
service_.destroy(implementation_);
}
/// Get the service associated with the I/O object.
service_type& get_service()
{
return service_;
}
/// Get the service associated with the I/O object.
const service_type& get_service() const
{
return service_;
}
/// Get the underlying implementation of the I/O object.
implementation_type& get_implementation()
{
return implementation_;
}
/// Get the underlying implementation of the I/O object.
const implementation_type& get_implementation() const
{
return implementation_;
}
private:
basic_io_object(const basic_io_object&);
basic_io_object& operator=(const basic_io_object&);
// The service associated with the I/O object.
service_type& service_;
/// The underlying implementation of the I/O object.
implementation_type implementation_;
};
#if defined(ASIO_HAS_MOVE)
// Specialisation for movable objects.
template <typename IoObjectService>
class basic_io_object<IoObjectService, true>
{
public:
typedef IoObjectService service_type;
typedef typename service_type::implementation_type implementation_type;
#if !defined(ASIO_NO_DEPRECATED)
asio::io_context& get_io_context()
{
return service_->get_io_context();
}
asio::io_context& get_io_service()
{
return service_->get_io_context();
}
#endif // !defined(ASIO_NO_DEPRECATED)
typedef asio::io_context::executor_type executor_type;
executor_type get_executor() ASIO_NOEXCEPT
{
return service_->get_io_context().get_executor();
}
protected:
explicit basic_io_object(asio::io_context& io_context)
: service_(&asio::use_service<IoObjectService>(io_context))
{
service_->construct(implementation_);
}
basic_io_object(basic_io_object&& other)
: service_(&other.get_service())
{
service_->move_construct(implementation_, other.implementation_);
}
template <typename IoObjectService1>
basic_io_object(IoObjectService1& other_service,
typename IoObjectService1::implementation_type& other_implementation)
: service_(&asio::use_service<IoObjectService>(
other_service.get_io_context()))
{
service_->converting_move_construct(implementation_,
other_service, other_implementation);
}
~basic_io_object()
{
service_->destroy(implementation_);
}
basic_io_object& operator=(basic_io_object&& other)
{
service_->move_assign(implementation_,
*other.service_, other.implementation_);
service_ = other.service_;
return *this;
}
service_type& get_service()
{
return *service_;
}
const service_type& get_service() const
{
return *service_;
}
implementation_type& get_implementation()
{
return implementation_;
}
const implementation_type& get_implementation() const
{
return implementation_;
}
private:
basic_io_object(const basic_io_object&);
void operator=(const basic_io_object&);
IoObjectService* service_;
implementation_type implementation_;
};
#endif // defined(ASIO_HAS_MOVE)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_IO_OBJECT_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,768 +0,0 @@
//
// basic_seq_packet_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SEQ_PACKET_SOCKET_HPP
#define ASIO_BASIC_SEQ_PACKET_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/basic_socket.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_BASIC_SEQ_PACKET_SOCKET_FWD_DECL)
#define ASIO_BASIC_SEQ_PACKET_SOCKET_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol, typename Executor = any_io_executor>
class basic_seq_packet_socket;
#endif // !defined(ASIO_BASIC_SEQ_PACKET_SOCKET_FWD_DECL)
/// Provides sequenced packet socket functionality.
/**
* The basic_seq_packet_socket class template provides asynchronous and blocking
* sequenced packet socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* Synchronous @c send, @c receive, and @c connect operations are thread safe
* with respect to each other, if the underlying operating system calls are
* also thread safe. This means that it is permitted to perform concurrent
* calls to these synchronous operations on a single socket object. Other
* synchronous operations, such as @c open or @c close, are not thread safe.
*/
template <typename Protocol, typename Executor>
class basic_seq_packet_socket
: public basic_socket<Protocol, Executor>
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the socket type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The socket type when rebound to the specified executor.
typedef basic_seq_packet_socket<Protocol, Executor1> other;
};
/// The native representation of a socket.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef typename basic_socket<Protocol,
Executor>::native_handle_type native_handle_type;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_seq_packet_socket without opening it.
/**
* This constructor creates a sequenced packet socket without opening it. The
* socket needs to be opened and then connected or accepted before data can
* be sent or received on it.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*/
explicit basic_seq_packet_socket(const executor_type& ex)
: basic_socket<Protocol, Executor>(ex)
{
}
/// Construct a basic_seq_packet_socket without opening it.
/**
* This constructor creates a sequenced packet socket without opening it. The
* socket needs to be opened and then connected or accepted before data can
* be sent or received on it.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*/
template <typename ExecutionContext>
explicit basic_seq_packet_socket(ExecutionContext& context,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: basic_socket<Protocol, Executor>(context)
{
}
/// Construct and open a basic_seq_packet_socket.
/**
* This constructor creates and opens a sequenced_packet socket. The socket
* needs to be connected or accepted before data can be sent or received on
* it.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
basic_seq_packet_socket(const executor_type& ex,
const protocol_type& protocol)
: basic_socket<Protocol, Executor>(ex, protocol)
{
}
/// Construct and open a basic_seq_packet_socket.
/**
* This constructor creates and opens a sequenced_packet socket. The socket
* needs to be connected or accepted before data can be sent or received on
* it.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_seq_packet_socket(ExecutionContext& context,
const protocol_type& protocol,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: basic_socket<Protocol, Executor>(context, protocol)
{
}
/// Construct a basic_seq_packet_socket, opening it and binding it to the
/// given local endpoint.
/**
* This constructor creates a sequenced packet socket and automatically opens
* it bound to the specified endpoint on the local machine. The protocol used
* is the protocol associated with the given endpoint.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the sequenced
* packet socket will be bound.
*
* @throws asio::system_error Thrown on failure.
*/
basic_seq_packet_socket(const executor_type& ex,
const endpoint_type& endpoint)
: basic_socket<Protocol, Executor>(ex, endpoint)
{
}
/// Construct a basic_seq_packet_socket, opening it and binding it to the
/// given local endpoint.
/**
* This constructor creates a sequenced packet socket and automatically opens
* it bound to the specified endpoint on the local machine. The protocol used
* is the protocol associated with the given endpoint.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param endpoint An endpoint on the local machine to which the sequenced
* packet socket will be bound.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_seq_packet_socket(ExecutionContext& context,
const endpoint_type& endpoint,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: basic_socket<Protocol, Executor>(context, endpoint)
{
}
/// Construct a basic_seq_packet_socket on an existing native socket.
/**
* This constructor creates a sequenced packet socket object to hold an
* existing native socket.
*
* @param ex The I/O executor that the socket will use, by default, to
* dispatch handlers for any asynchronous operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws asio::system_error Thrown on failure.
*/
basic_seq_packet_socket(const executor_type& ex,
const protocol_type& protocol, const native_handle_type& native_socket)
: basic_socket<Protocol, Executor>(ex, protocol, native_socket)
{
}
/// Construct a basic_seq_packet_socket on an existing native socket.
/**
* This constructor creates a sequenced packet socket object to hold an
* existing native socket.
*
* @param context An execution context which provides the I/O executor that
* the socket will use, by default, to dispatch handlers for any asynchronous
* operations performed on the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_seq_packet_socket(ExecutionContext& context,
const protocol_type& protocol, const native_handle_type& native_socket,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: basic_socket<Protocol, Executor>(context, protocol, native_socket)
{
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_seq_packet_socket from another.
/**
* This constructor moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
basic_seq_packet_socket(basic_seq_packet_socket&& other) ASIO_NOEXCEPT
: basic_socket<Protocol, Executor>(std::move(other))
{
}
/// Move-assign a basic_seq_packet_socket from another.
/**
* This assignment operator moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
basic_seq_packet_socket& operator=(basic_seq_packet_socket&& other)
{
basic_socket<Protocol, Executor>::operator=(std::move(other));
return *this;
}
/// Move-construct a basic_seq_packet_socket from a socket of another protocol
/// type.
/**
* This constructor moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
basic_seq_packet_socket(basic_seq_packet_socket<Protocol1, Executor1>&& other,
typename constraint<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value
>::type = 0)
: basic_socket<Protocol, Executor>(std::move(other))
{
}
/// Move-assign a basic_seq_packet_socket from a socket of another protocol
/// type.
/**
* This assignment operator moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(const executor_type&)
* constructor.
*/
template <typename Protocol1, typename Executor1>
typename constraint<
is_convertible<Protocol1, Protocol>::value
&& is_convertible<Executor1, Executor>::value,
basic_seq_packet_socket&
>::type operator=(basic_seq_packet_socket<Protocol1, Executor1>&& other)
{
basic_socket<Protocol, Executor>::operator=(std::move(other));
return *this;
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destroys the socket.
/**
* This function destroys the socket, cancelling any outstanding asynchronous
* operations associated with the socket as if by calling @c cancel.
*/
~basic_seq_packet_socket()
{
}
/// Send some data on the socket.
/**
* This function is used to send data on the sequenced packet socket. The
* function call will block until the data has been sent successfully, or an
* until error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws asio::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.send(asio::buffer(data, size), 0);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, flags, ec);
asio::detail::throw_error(ec, "send");
return s;
}
/// Send some data on the socket.
/**
* This function is used to send data on the sequenced packet socket. The
* function call will block the data has been sent successfully, or an until
* error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent. Returns 0 if an error occurred.
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref write function if you need to ensure that all data
* is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
return this->impl_.get_service().send(
this->impl_.get_implementation(), buffers, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send data on the sequenced packet
* socket. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(asio::buffer(data, size), 0, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags,
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<WriteHandler,
void (asio::error_code, std::size_t)>(
initiate_async_send(this), handler, buffers, flags);
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @returns The number of bytes received.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(asio::buffer(data, size), out_flags);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags& out_flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().receive_with_flags(
this->impl_.get_implementation(), buffers, 0, out_flags, ec);
asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @returns The number of bytes received.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(asio::buffer(data, size), 0, out_flags);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags)
{
asio::error_code ec;
std::size_t s = this->impl_.get_service().receive_with_flags(
this->impl_.get_implementation(), buffers, in_flags, out_flags, ec);
asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received. Returns 0 if an error occurred.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, asio::error_code& ec)
{
return this->impl_.get_service().receive_with_flags(
this->impl_.get_implementation(), buffers, in_flags, out_flags, ec);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the sequenced
* packet socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param out_flags Once the asynchronous operation completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record. The caller must guarantee that the referenced
* variable remains valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(asio::buffer(data, size), out_flags, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags& out_flags,
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<ReadHandler,
void (asio::error_code, std::size_t)>(
initiate_async_receive_with_flags(this), handler,
buffers, socket_base::message_flags(0), &out_flags);
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the sequenced
* data socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags Once the asynchronous operation completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record. The caller must guarantee that the referenced
* variable remains valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(
* asio::buffer(data, size),
* 0, out_flags, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags,
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<ReadHandler,
void (asio::error_code, std::size_t)>(
initiate_async_receive_with_flags(this),
handler, buffers, in_flags, &out_flags);
}
private:
// Disallow copying and assignment.
basic_seq_packet_socket(const basic_seq_packet_socket&) ASIO_DELETED;
basic_seq_packet_socket& operator=(
const basic_seq_packet_socket&) ASIO_DELETED;
class initiate_async_send
{
public:
typedef Executor executor_type;
explicit initiate_async_send(basic_seq_packet_socket* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(ASIO_MOVE_ARG(WriteHandler) handler,
const ConstBufferSequence& buffers,
socket_base::message_flags flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_send(
self_->impl_.get_implementation(), buffers, flags,
handler2.value, self_->impl_.get_executor());
}
private:
basic_seq_packet_socket* self_;
};
class initiate_async_receive_with_flags
{
public:
typedef Executor executor_type;
explicit initiate_async_receive_with_flags(basic_seq_packet_socket* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ASIO_MOVE_ARG(ReadHandler) handler,
const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags* out_flags) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_receive_with_flags(
self_->impl_.get_implementation(), buffers, in_flags,
*out_flags, handler2.value, self_->impl_.get_executor());
}
private:
basic_seq_packet_socket* self_;
};
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_SEQ_PACKET_SOCKET_HPP

View File

@ -1,907 +0,0 @@
//
// basic_serial_port.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Rep Invariant Systems, Inc. (info@repinvariant.com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SERIAL_PORT_HPP
#define ASIO_BASIC_SERIAL_PORT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_SERIAL_PORT) \
|| defined(GENERATING_DOCUMENTATION)
#include <string>
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/serial_port_base.hpp"
#if defined(ASIO_HAS_IOCP)
# include "asio/detail/win_iocp_serial_port_service.hpp"
#else
# include "asio/detail/reactive_serial_port_service.hpp"
#endif
#if defined(ASIO_HAS_MOVE)
# include <utility>
#endif // defined(ASIO_HAS_MOVE)
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides serial port functionality.
/**
* The basic_serial_port class provides a wrapper over serial port
* functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Executor = any_io_executor>
class basic_serial_port
: public serial_port_base
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the serial port type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The serial port type when rebound to the specified executor.
typedef basic_serial_port<Executor1> other;
};
/// The native representation of a serial port.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#elif defined(ASIO_HAS_IOCP)
typedef detail::win_iocp_serial_port_service::native_handle_type
native_handle_type;
#else
typedef detail::reactive_serial_port_service::native_handle_type
native_handle_type;
#endif
/// A basic_basic_serial_port is always the lowest layer.
typedef basic_serial_port lowest_layer_type;
/// Construct a basic_serial_port without opening it.
/**
* This constructor creates a serial port without opening it.
*
* @param ex The I/O executor that the serial port will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* serial port.
*/
explicit basic_serial_port(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct a basic_serial_port without opening it.
/**
* This constructor creates a serial port without opening it.
*
* @param context An execution context which provides the I/O executor that
* the serial port will use, by default, to dispatch handlers for any
* asynchronous operations performed on the serial port.
*/
template <typename ExecutionContext>
explicit basic_serial_port(ExecutionContext& context,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct and open a basic_serial_port.
/**
* This constructor creates and opens a serial port for the specified device
* name.
*
* @param ex The I/O executor that the serial port will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* serial port.
*
* @param device The platform-specific device name for this serial
* port.
*/
basic_serial_port(const executor_type& ex, const char* device)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), device, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct and open a basic_serial_port.
/**
* This constructor creates and opens a serial port for the specified device
* name.
*
* @param context An execution context which provides the I/O executor that
* the serial port will use, by default, to dispatch handlers for any
* asynchronous operations performed on the serial port.
*
* @param device The platform-specific device name for this serial
* port.
*/
template <typename ExecutionContext>
basic_serial_port(ExecutionContext& context, const char* device,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), device, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct and open a basic_serial_port.
/**
* This constructor creates and opens a serial port for the specified device
* name.
*
* @param ex The I/O executor that the serial port will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* serial port.
*
* @param device The platform-specific device name for this serial
* port.
*/
basic_serial_port(const executor_type& ex, const std::string& device)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), device, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct and open a basic_serial_port.
/**
* This constructor creates and opens a serial port for the specified device
* name.
*
* @param context An execution context which provides the I/O executor that
* the serial port will use, by default, to dispatch handlers for any
* asynchronous operations performed on the serial port.
*
* @param device The platform-specific device name for this serial
* port.
*/
template <typename ExecutionContext>
basic_serial_port(ExecutionContext& context, const std::string& device,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), device, ec);
asio::detail::throw_error(ec, "open");
}
/// Construct a basic_serial_port on an existing native serial port.
/**
* This constructor creates a serial port object to hold an existing native
* serial port.
*
* @param ex The I/O executor that the serial port will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* serial port.
*
* @param native_serial_port A native serial port.
*
* @throws asio::system_error Thrown on failure.
*/
basic_serial_port(const executor_type& ex,
const native_handle_type& native_serial_port)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_serial_port, ec);
asio::detail::throw_error(ec, "assign");
}
/// Construct a basic_serial_port on an existing native serial port.
/**
* This constructor creates a serial port object to hold an existing native
* serial port.
*
* @param context An execution context which provides the I/O executor that
* the serial port will use, by default, to dispatch handlers for any
* asynchronous operations performed on the serial port.
*
* @param native_serial_port A native serial port.
*
* @throws asio::system_error Thrown on failure.
*/
template <typename ExecutionContext>
basic_serial_port(ExecutionContext& context,
const native_handle_type& native_serial_port,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_serial_port, ec);
asio::detail::throw_error(ec, "assign");
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_serial_port from another.
/**
* This constructor moves a serial port from one object to another.
*
* @param other The other basic_serial_port object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_serial_port(const executor_type&)
* constructor.
*/
basic_serial_port(basic_serial_port&& other)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_serial_port from another.
/**
* This assignment operator moves a serial port from one object to another.
*
* @param other The other basic_serial_port object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_serial_port(const executor_type&)
* constructor.
*/
basic_serial_port& operator=(basic_serial_port&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destroys the serial port.
/**
* This function destroys the serial port, cancelling any outstanding
* asynchronous wait operations associated with the serial port as if by
* calling @c cancel.
*/
~basic_serial_port()
{
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return impl_.get_executor();
}
/// Get a reference to the lowest layer.
/**
* This function returns a reference to the lowest layer in a stack of
* layers. Since a basic_serial_port cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A reference to the lowest layer in the stack of layers. Ownership
* is not transferred to the caller.
*/
lowest_layer_type& lowest_layer()
{
return *this;
}
/// Get a const reference to the lowest layer.
/**
* This function returns a const reference to the lowest layer in a stack of
* layers. Since a basic_serial_port cannot contain any further layers, it
* simply returns a reference to itself.
*
* @return A const reference to the lowest layer in the stack of layers.
* Ownership is not transferred to the caller.
*/
const lowest_layer_type& lowest_layer() const
{
return *this;
}
/// Open the serial port using the specified device name.
/**
* This function opens the serial port for the specified device name.
*
* @param device The platform-specific device name.
*
* @throws asio::system_error Thrown on failure.
*/
void open(const std::string& device)
{
asio::error_code ec;
impl_.get_service().open(impl_.get_implementation(), device, ec);
asio::detail::throw_error(ec, "open");
}
/// Open the serial port using the specified device name.
/**
* This function opens the serial port using the given platform-specific
* device name.
*
* @param device The platform-specific device name.
*
* @param ec Set the indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID open(const std::string& device,
asio::error_code& ec)
{
impl_.get_service().open(impl_.get_implementation(), device, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Assign an existing native serial port to the serial port.
/*
* This function opens the serial port to hold an existing native serial port.
*
* @param native_serial_port A native serial port.
*
* @throws asio::system_error Thrown on failure.
*/
void assign(const native_handle_type& native_serial_port)
{
asio::error_code ec;
impl_.get_service().assign(impl_.get_implementation(),
native_serial_port, ec);
asio::detail::throw_error(ec, "assign");
}
/// Assign an existing native serial port to the serial port.
/*
* This function opens the serial port to hold an existing native serial port.
*
* @param native_serial_port A native serial port.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID assign(const native_handle_type& native_serial_port,
asio::error_code& ec)
{
impl_.get_service().assign(impl_.get_implementation(),
native_serial_port, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Determine whether the serial port is open.
bool is_open() const
{
return impl_.get_service().is_open(impl_.get_implementation());
}
/// Close the serial port.
/**
* This function is used to close the serial port. Any asynchronous read or
* write operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void close()
{
asio::error_code ec;
impl_.get_service().close(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "close");
}
/// Close the serial port.
/**
* This function is used to close the serial port. Any asynchronous read or
* write operations will be cancelled immediately, and will complete with the
* asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
impl_.get_service().close(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get the native serial port representation.
/**
* This function may be used to obtain the underlying representation of the
* serial port. This is intended to allow access to native serial port
* functionality that is not otherwise provided.
*/
native_handle_type native_handle()
{
return impl_.get_service().native_handle(impl_.get_implementation());
}
/// Cancel all asynchronous operations associated with the serial port.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @throws asio::system_error Thrown on failure.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all asynchronous operations associated with the serial port.
/**
* This function causes all outstanding asynchronous read or write operations
* to finish immediately, and the handlers for cancelled operations will be
* passed the asio::error::operation_aborted error.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Send a break sequence to the serial port.
/**
* This function causes a break sequence of platform-specific duration to be
* sent out the serial port.
*
* @throws asio::system_error Thrown on failure.
*/
void send_break()
{
asio::error_code ec;
impl_.get_service().send_break(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "send_break");
}
/// Send a break sequence to the serial port.
/**
* This function causes a break sequence of platform-specific duration to be
* sent out the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID send_break(asio::error_code& ec)
{
impl_.get_service().send_break(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Set an option on the serial port.
/**
* This function is used to set an option on the serial port.
*
* @param option The option value to be set on the serial port.
*
* @throws asio::system_error Thrown on failure.
*
* @sa SettableSerialPortOption @n
* asio::serial_port_base::baud_rate @n
* asio::serial_port_base::flow_control @n
* asio::serial_port_base::parity @n
* asio::serial_port_base::stop_bits @n
* asio::serial_port_base::character_size
*/
template <typename SettableSerialPortOption>
void set_option(const SettableSerialPortOption& option)
{
asio::error_code ec;
impl_.get_service().set_option(impl_.get_implementation(), option, ec);
asio::detail::throw_error(ec, "set_option");
}
/// Set an option on the serial port.
/**
* This function is used to set an option on the serial port.
*
* @param option The option value to be set on the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa SettableSerialPortOption @n
* asio::serial_port_base::baud_rate @n
* asio::serial_port_base::flow_control @n
* asio::serial_port_base::parity @n
* asio::serial_port_base::stop_bits @n
* asio::serial_port_base::character_size
*/
template <typename SettableSerialPortOption>
ASIO_SYNC_OP_VOID set_option(const SettableSerialPortOption& option,
asio::error_code& ec)
{
impl_.get_service().set_option(impl_.get_implementation(), option, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Get an option from the serial port.
/**
* This function is used to get the current value of an option on the serial
* port.
*
* @param option The option value to be obtained from the serial port.
*
* @throws asio::system_error Thrown on failure.
*
* @sa GettableSerialPortOption @n
* asio::serial_port_base::baud_rate @n
* asio::serial_port_base::flow_control @n
* asio::serial_port_base::parity @n
* asio::serial_port_base::stop_bits @n
* asio::serial_port_base::character_size
*/
template <typename GettableSerialPortOption>
void get_option(GettableSerialPortOption& option) const
{
asio::error_code ec;
impl_.get_service().get_option(impl_.get_implementation(), option, ec);
asio::detail::throw_error(ec, "get_option");
}
/// Get an option from the serial port.
/**
* This function is used to get the current value of an option on the serial
* port.
*
* @param option The option value to be obtained from the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*
* @sa GettableSerialPortOption @n
* asio::serial_port_base::baud_rate @n
* asio::serial_port_base::flow_control @n
* asio::serial_port_base::parity @n
* asio::serial_port_base::stop_bits @n
* asio::serial_port_base::character_size
*/
template <typename GettableSerialPortOption>
ASIO_SYNC_OP_VOID get_option(GettableSerialPortOption& option,
asio::error_code& ec) const
{
impl_.get_service().get_option(impl_.get_implementation(), option, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Write some data to the serial port.
/**
* This function is used to write data to the serial port. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the serial port.
*
* @returns The number of bytes written.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* basic_serial_port.write_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = impl_.get_service().write_some(
impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "write_some");
return s;
}
/// Write some data to the serial port.
/**
* This function is used to write data to the serial port. The function call
* will block until one or more bytes of the data has been written
* successfully, or until an error occurs.
*
* @param buffers One or more data buffers to be written to the serial port.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes written. Returns 0 if an error occurred.
*
* @note The write_some operation may not transmit all of the data to the
* peer. Consider using the @ref write function if you need to ensure that
* all data is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec)
{
return impl_.get_service().write_some(
impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous write.
/**
* This function is used to asynchronously write data to the serial port.
* The function call always returns immediately.
*
* @param buffers One or more data buffers to be written to the serial port.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the write operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes written.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*
* @note The write operation may not transmit all of the data to the peer.
* Consider using the @ref async_write function if you need to ensure that all
* data is written before the asynchronous operation completes.
*
* @par Example
* To write a single data buffer use the @ref buffer function as follows:
* @code
* basic_serial_port.async_write_some(
* asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on writing multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_write_some(const ConstBufferSequence& buffers,
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<WriteHandler,
void (asio::error_code, std::size_t)>(
initiate_async_write_some(this), handler, buffers);
}
/// Read some data from the serial port.
/**
* This function is used to read data from the serial port. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @returns The number of bytes read.
*
* @throws asio::system_error Thrown on failure. An error code of
* asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* basic_serial_port.read_some(asio::buffer(data, size));
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
asio::error_code ec;
std::size_t s = impl_.get_service().read_some(
impl_.get_implementation(), buffers, ec);
asio::detail::throw_error(ec, "read_some");
return s;
}
/// Read some data from the serial port.
/**
* This function is used to read data from the serial port. The function
* call will block until one or more bytes of data has been read successfully,
* or until an error occurs.
*
* @param buffers One or more buffers into which the data will be read.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes read. Returns 0 if an error occurred.
*
* @note The read_some operation may not read all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that
* the requested amount of data is read before the blocking operation
* completes.
*/
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return impl_.get_service().read_some(
impl_.get_implementation(), buffers, ec);
}
/// Start an asynchronous read.
/**
* This function is used to asynchronously read data from the serial port.
* The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be read.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param handler The handler to be called when the read operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes read.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*
* @note The read operation may not read all of the requested number of bytes.
* Consider using the @ref async_read function if you need to ensure that the
* requested amount of data is read before the asynchronous operation
* completes.
*
* @par Example
* To read into a single data buffer use the @ref buffer function as follows:
* @code
* basic_serial_port.async_read_some(
* asio::buffer(data, size), handler);
* @endcode
* See the @ref buffer documentation for information on reading into multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_read_some(const MutableBufferSequence& buffers,
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<ReadHandler,
void (asio::error_code, std::size_t)>(
initiate_async_read_some(this), handler, buffers);
}
private:
// Disallow copying and assignment.
basic_serial_port(const basic_serial_port&) ASIO_DELETED;
basic_serial_port& operator=(const basic_serial_port&) ASIO_DELETED;
class initiate_async_write_some
{
public:
typedef Executor executor_type;
explicit initiate_async_write_some(basic_serial_port* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename WriteHandler, typename ConstBufferSequence>
void operator()(ASIO_MOVE_ARG(WriteHandler) handler,
const ConstBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WriteHandler.
ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
detail::non_const_lvalue<WriteHandler> handler2(handler);
self_->impl_.get_service().async_write_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_serial_port* self_;
};
class initiate_async_read_some
{
public:
typedef Executor executor_type;
explicit initiate_async_read_some(basic_serial_port* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename ReadHandler, typename MutableBufferSequence>
void operator()(ASIO_MOVE_ARG(ReadHandler) handler,
const MutableBufferSequence& buffers) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a ReadHandler.
ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
detail::non_const_lvalue<ReadHandler> handler2(handler);
self_->impl_.get_service().async_read_some(
self_->impl_.get_implementation(), buffers,
handler2.value, self_->impl_.get_executor());
}
private:
basic_serial_port* self_;
};
#if defined(ASIO_HAS_IOCP)
detail::io_object_impl<detail::win_iocp_serial_port_service, Executor> impl_;
#else
detail::io_object_impl<detail::reactive_serial_port_service, Executor> impl_;
#endif
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_SERIAL_PORT)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_BASIC_SERIAL_PORT_HPP

View File

@ -1,576 +0,0 @@
//
// basic_signal_set.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SIGNAL_SET_HPP
#define ASIO_BASIC_SIGNAL_SET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/any_io_executor.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/signal_set_service.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Provides signal functionality.
/**
* The basic_signal_set class provides the ability to perform an asynchronous
* wait for one or more signals to occur.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Example
* Performing an asynchronous wait:
* @code
* void handler(
* const asio::error_code& error,
* int signal_number)
* {
* if (!error)
* {
* // A signal occurred.
* }
* }
*
* ...
*
* // Construct a signal set registered for process termination.
* asio::signal_set signals(my_context, SIGINT, SIGTERM);
*
* // Start an asynchronous wait for one of the signals to occur.
* signals.async_wait(handler);
* @endcode
*
* @par Queueing of signal notifications
*
* If a signal is registered with a signal_set, and the signal occurs when
* there are no waiting handlers, then the signal notification is queued. The
* next async_wait operation on that signal_set will dequeue the notification.
* If multiple notifications are queued, subsequent async_wait operations
* dequeue them one at a time. Signal notifications are dequeued in order of
* ascending signal number.
*
* If a signal number is removed from a signal_set (using the @c remove or @c
* erase member functions) then any queued notifications for that signal are
* discarded.
*
* @par Multiple registration of signals
*
* The same signal number may be registered with different signal_set objects.
* When the signal occurs, one handler is called for each signal_set object.
*
* Note that multiple registration only works for signals that are registered
* using Asio. The application must not also register a signal handler using
* functions such as @c signal() or @c sigaction().
*
* @par Signal masking on POSIX platforms
*
* POSIX allows signals to be blocked using functions such as @c sigprocmask()
* and @c pthread_sigmask(). For signals to be delivered, programs must ensure
* that any signals registered using signal_set objects are unblocked in at
* least one thread.
*/
template <typename Executor = any_io_executor>
class basic_signal_set
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the signal set type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The signal set type when rebound to the specified executor.
typedef basic_signal_set<Executor1> other;
};
/// Construct a signal set without adding any signals.
/**
* This constructor creates a signal set without registering for any signals.
*
* @param ex The I/O executor that the signal set will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* signal set.
*/
explicit basic_signal_set(const executor_type& ex)
: impl_(0, ex)
{
}
/// Construct a signal set without adding any signals.
/**
* This constructor creates a signal set without registering for any signals.
*
* @param context An execution context which provides the I/O executor that
* the signal set will use, by default, to dispatch handlers for any
* asynchronous operations performed on the signal set.
*/
template <typename ExecutionContext>
explicit basic_signal_set(ExecutionContext& context,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: impl_(0, 0, context)
{
}
/// Construct a signal set and add one signal.
/**
* This constructor creates a signal set and registers for one signal.
*
* @param ex The I/O executor that the signal set will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* signal set.
*
* @param signal_number_1 The signal number to be added.
*
* @note This constructor is equivalent to performing:
* @code asio::signal_set signals(ex);
* signals.add(signal_number_1); @endcode
*/
basic_signal_set(const executor_type& ex, int signal_number_1)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number_1, ec);
asio::detail::throw_error(ec, "add");
}
/// Construct a signal set and add one signal.
/**
* This constructor creates a signal set and registers for one signal.
*
* @param context An execution context which provides the I/O executor that
* the signal set will use, by default, to dispatch handlers for any
* asynchronous operations performed on the signal set.
*
* @param signal_number_1 The signal number to be added.
*
* @note This constructor is equivalent to performing:
* @code asio::signal_set signals(context);
* signals.add(signal_number_1); @endcode
*/
template <typename ExecutionContext>
basic_signal_set(ExecutionContext& context, int signal_number_1,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number_1, ec);
asio::detail::throw_error(ec, "add");
}
/// Construct a signal set and add two signals.
/**
* This constructor creates a signal set and registers for two signals.
*
* @param ex The I/O executor that the signal set will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* signal set.
*
* @param signal_number_1 The first signal number to be added.
*
* @param signal_number_2 The second signal number to be added.
*
* @note This constructor is equivalent to performing:
* @code asio::signal_set signals(ex);
* signals.add(signal_number_1);
* signals.add(signal_number_2); @endcode
*/
basic_signal_set(const executor_type& ex, int signal_number_1,
int signal_number_2)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number_1, ec);
asio::detail::throw_error(ec, "add");
impl_.get_service().add(impl_.get_implementation(), signal_number_2, ec);
asio::detail::throw_error(ec, "add");
}
/// Construct a signal set and add two signals.
/**
* This constructor creates a signal set and registers for two signals.
*
* @param context An execution context which provides the I/O executor that
* the signal set will use, by default, to dispatch handlers for any
* asynchronous operations performed on the signal set.
*
* @param signal_number_1 The first signal number to be added.
*
* @param signal_number_2 The second signal number to be added.
*
* @note This constructor is equivalent to performing:
* @code asio::signal_set signals(context);
* signals.add(signal_number_1);
* signals.add(signal_number_2); @endcode
*/
template <typename ExecutionContext>
basic_signal_set(ExecutionContext& context, int signal_number_1,
int signal_number_2,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number_1, ec);
asio::detail::throw_error(ec, "add");
impl_.get_service().add(impl_.get_implementation(), signal_number_2, ec);
asio::detail::throw_error(ec, "add");
}
/// Construct a signal set and add three signals.
/**
* This constructor creates a signal set and registers for three signals.
*
* @param ex The I/O executor that the signal set will use, by default, to
* dispatch handlers for any asynchronous operations performed on the
* signal set.
*
* @param signal_number_1 The first signal number to be added.
*
* @param signal_number_2 The second signal number to be added.
*
* @param signal_number_3 The third signal number to be added.
*
* @note This constructor is equivalent to performing:
* @code asio::signal_set signals(ex);
* signals.add(signal_number_1);
* signals.add(signal_number_2);
* signals.add(signal_number_3); @endcode
*/
basic_signal_set(const executor_type& ex, int signal_number_1,
int signal_number_2, int signal_number_3)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number_1, ec);
asio::detail::throw_error(ec, "add");
impl_.get_service().add(impl_.get_implementation(), signal_number_2, ec);
asio::detail::throw_error(ec, "add");
impl_.get_service().add(impl_.get_implementation(), signal_number_3, ec);
asio::detail::throw_error(ec, "add");
}
/// Construct a signal set and add three signals.
/**
* This constructor creates a signal set and registers for three signals.
*
* @param context An execution context which provides the I/O executor that
* the signal set will use, by default, to dispatch handlers for any
* asynchronous operations performed on the signal set.
*
* @param signal_number_1 The first signal number to be added.
*
* @param signal_number_2 The second signal number to be added.
*
* @param signal_number_3 The third signal number to be added.
*
* @note This constructor is equivalent to performing:
* @code asio::signal_set signals(context);
* signals.add(signal_number_1);
* signals.add(signal_number_2);
* signals.add(signal_number_3); @endcode
*/
template <typename ExecutionContext>
basic_signal_set(ExecutionContext& context, int signal_number_1,
int signal_number_2, int signal_number_3,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value,
defaulted_constraint
>::type = defaulted_constraint())
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number_1, ec);
asio::detail::throw_error(ec, "add");
impl_.get_service().add(impl_.get_implementation(), signal_number_2, ec);
asio::detail::throw_error(ec, "add");
impl_.get_service().add(impl_.get_implementation(), signal_number_3, ec);
asio::detail::throw_error(ec, "add");
}
/// Destroys the signal set.
/**
* This function destroys the signal set, cancelling any outstanding
* asynchronous wait operations associated with the signal set as if by
* calling @c cancel.
*/
~basic_signal_set()
{
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return impl_.get_executor();
}
/// Add a signal to a signal_set.
/**
* This function adds the specified signal to the set. It has no effect if the
* signal is already in the set.
*
* @param signal_number The signal to be added to the set.
*
* @throws asio::system_error Thrown on failure.
*/
void add(int signal_number)
{
asio::error_code ec;
impl_.get_service().add(impl_.get_implementation(), signal_number, ec);
asio::detail::throw_error(ec, "add");
}
/// Add a signal to a signal_set.
/**
* This function adds the specified signal to the set. It has no effect if the
* signal is already in the set.
*
* @param signal_number The signal to be added to the set.
*
* @param ec Set to indicate what error occurred, if any.
*/
ASIO_SYNC_OP_VOID add(int signal_number,
asio::error_code& ec)
{
impl_.get_service().add(impl_.get_implementation(), signal_number, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Remove a signal from a signal_set.
/**
* This function removes the specified signal from the set. It has no effect
* if the signal is not in the set.
*
* @param signal_number The signal to be removed from the set.
*
* @throws asio::system_error Thrown on failure.
*
* @note Removes any notifications that have been queued for the specified
* signal number.
*/
void remove(int signal_number)
{
asio::error_code ec;
impl_.get_service().remove(impl_.get_implementation(), signal_number, ec);
asio::detail::throw_error(ec, "remove");
}
/// Remove a signal from a signal_set.
/**
* This function removes the specified signal from the set. It has no effect
* if the signal is not in the set.
*
* @param signal_number The signal to be removed from the set.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Removes any notifications that have been queued for the specified
* signal number.
*/
ASIO_SYNC_OP_VOID remove(int signal_number,
asio::error_code& ec)
{
impl_.get_service().remove(impl_.get_implementation(), signal_number, ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Remove all signals from a signal_set.
/**
* This function removes all signals from the set. It has no effect if the set
* is already empty.
*
* @throws asio::system_error Thrown on failure.
*
* @note Removes all queued notifications.
*/
void clear()
{
asio::error_code ec;
impl_.get_service().clear(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "clear");
}
/// Remove all signals from a signal_set.
/**
* This function removes all signals from the set. It has no effect if the set
* is already empty.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note Removes all queued notifications.
*/
ASIO_SYNC_OP_VOID clear(asio::error_code& ec)
{
impl_.get_service().clear(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Cancel all operations associated with the signal set.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the signal set. The handler for each cancelled
* operation will be invoked with the asio::error::operation_aborted
* error code.
*
* Cancellation does not alter the set of registered signals.
*
* @throws asio::system_error Thrown on failure.
*
* @note If a registered signal occurred before cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
void cancel()
{
asio::error_code ec;
impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
}
/// Cancel all operations associated with the signal set.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the signal set. The handler for each cancelled
* operation will be invoked with the asio::error::operation_aborted
* error code.
*
* Cancellation does not alter the set of registered signals.
*
* @param ec Set to indicate what error occurred, if any.
*
* @note If a registered signal occurred before cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
ASIO_SYNC_OP_VOID cancel(asio::error_code& ec)
{
impl_.get_service().cancel(impl_.get_implementation(), ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Start an asynchronous operation to wait for a signal to be delivered.
/**
* This function may be used to initiate an asynchronous wait against the
* signal set. It always returns immediately.
*
* For each call to async_wait(), the supplied handler will be called exactly
* once. The handler will be called when:
*
* @li One of the registered signals in the signal set occurs; or
*
* @li The signal set was cancelled, in which case the handler is passed the
* error code asio::error::operation_aborted.
*
* @param handler The handler to be called when the signal occurs. Copies
* will be made of the handler as required. The function signature of the
* handler must be:
* @code void handler(
* const asio::error_code& error, // Result of operation.
* int signal_number // Indicates which signal occurred.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code, int))
SignalHandler ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(SignalHandler,
void (asio::error_code, int))
async_wait(
ASIO_MOVE_ARG(SignalHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<SignalHandler, void (asio::error_code, int)>(
initiate_async_wait(this), handler);
}
private:
// Disallow copying and assignment.
basic_signal_set(const basic_signal_set&) ASIO_DELETED;
basic_signal_set& operator=(const basic_signal_set&) ASIO_DELETED;
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_signal_set* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename SignalHandler>
void operator()(ASIO_MOVE_ARG(SignalHandler) handler) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a SignalHandler.
ASIO_SIGNAL_HANDLER_CHECK(SignalHandler, handler) type_check;
detail::non_const_lvalue<SignalHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(),
handler2.value, self_->impl_.get_executor());
}
private:
basic_signal_set* self_;
};
detail::io_object_impl<detail::signal_set_service, Executor> impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_SIGNAL_SET_HPP

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,407 +0,0 @@
//
// basic_socket_iostream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SOCKET_IOSTREAM_HPP
#define ASIO_BASIC_SOCKET_IOSTREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include <istream>
#include <ostream>
#include "asio/basic_socket_streambuf.hpp"
#if !defined(ASIO_HAS_VARIADIC_TEMPLATES)
# include "asio/detail/variadic_templates.hpp"
// A macro that should expand to:
// template <typename T1, ..., typename Tn>
// explicit basic_socket_iostream(T1 x1, ..., Tn xn)
// : std::basic_iostream<char>(
// &this->detail::socket_iostream_base<
// Protocol, Clock, WaitTraits>::streambuf_)
// {
// if (rdbuf()->connect(x1, ..., xn) == 0)
// this->setstate(std::ios_base::failbit);
// }
// This macro should only persist within this file.
# define ASIO_PRIVATE_CTR_DEF(n) \
template <ASIO_VARIADIC_TPARAMS(n)> \
explicit basic_socket_iostream(ASIO_VARIADIC_BYVAL_PARAMS(n)) \
: std::basic_iostream<char>( \
&this->detail::socket_iostream_base< \
Protocol, Clock, WaitTraits>::streambuf_) \
{ \
this->setf(std::ios_base::unitbuf); \
if (rdbuf()->connect(ASIO_VARIADIC_BYVAL_ARGS(n)) == 0) \
this->setstate(std::ios_base::failbit); \
} \
/**/
// A macro that should expand to:
// template <typename T1, ..., typename Tn>
// void connect(T1 x1, ..., Tn xn)
// {
// if (rdbuf()->connect(x1, ..., xn) == 0)
// this->setstate(std::ios_base::failbit);
// }
// This macro should only persist within this file.
# define ASIO_PRIVATE_CONNECT_DEF(n) \
template <ASIO_VARIADIC_TPARAMS(n)> \
void connect(ASIO_VARIADIC_BYVAL_PARAMS(n)) \
{ \
if (rdbuf()->connect(ASIO_VARIADIC_BYVAL_ARGS(n)) == 0) \
this->setstate(std::ios_base::failbit); \
} \
/**/
#endif // !defined(ASIO_HAS_VARIADIC_TEMPLATES)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// A separate base class is used to ensure that the streambuf is initialised
// prior to the basic_socket_iostream's basic_iostream base class.
template <typename Protocol, typename Clock, typename WaitTraits>
class socket_iostream_base
{
protected:
socket_iostream_base()
{
}
#if defined(ASIO_HAS_MOVE)
socket_iostream_base(socket_iostream_base&& other)
: streambuf_(std::move(other.streambuf_))
{
}
socket_iostream_base(basic_stream_socket<Protocol> s)
: streambuf_(std::move(s))
{
}
socket_iostream_base& operator=(socket_iostream_base&& other)
{
streambuf_ = std::move(other.streambuf_);
return *this;
}
#endif // defined(ASIO_HAS_MOVE)
basic_socket_streambuf<Protocol, Clock, WaitTraits> streambuf_;
};
} // namespace detail
#if !defined(ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL)
#define ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol,
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = boost::posix_time::ptime,
typename WaitTraits = time_traits<Clock> >
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock> >
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
class basic_socket_iostream;
#endif // !defined(ASIO_BASIC_SOCKET_IOSTREAM_FWD_DECL)
/// Iostream interface for a socket.
#if defined(GENERATING_DOCUMENTATION)
template <typename Protocol,
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock> >
#else // defined(GENERATING_DOCUMENTATION)
template <typename Protocol, typename Clock, typename WaitTraits>
#endif // defined(GENERATING_DOCUMENTATION)
class basic_socket_iostream
: private detail::socket_iostream_base<Protocol, Clock, WaitTraits>,
public std::basic_iostream<char>
{
private:
// These typedefs are intended keep this class's implementation independent
// of whether it's using Boost.DateClock, Boost.Chrono or std::chrono.
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef WaitTraits traits_helper;
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef detail::chrono_time_traits<Clock, WaitTraits> traits_helper;
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
public:
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// The clock type.
typedef Clock clock_type;
#if defined(GENERATING_DOCUMENTATION)
/// (Deprecated: Use time_point.) The time type.
typedef typename WaitTraits::time_type time_type;
/// The time type.
typedef typename WaitTraits::time_point time_point;
/// (Deprecated: Use duration.) The duration type.
typedef typename WaitTraits::duration_type duration_type;
/// The duration type.
typedef typename WaitTraits::duration duration;
#else
# if !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_type;
typedef typename traits_helper::duration_type duration_type;
# endif // !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_point;
typedef typename traits_helper::duration_type duration;
#endif
/// Construct a basic_socket_iostream without establishing a connection.
basic_socket_iostream()
: std::basic_iostream<char>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_)
{
this->setf(std::ios_base::unitbuf);
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Construct a basic_socket_iostream from the supplied socket.
explicit basic_socket_iostream(basic_stream_socket<protocol_type> s)
: detail::socket_iostream_base<
Protocol, Clock, WaitTraits>(std::move(s)),
std::basic_iostream<char>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_)
{
this->setf(std::ios_base::unitbuf);
}
#if defined(ASIO_HAS_STD_IOSTREAM_MOVE) \
|| defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_socket_iostream from another.
basic_socket_iostream(basic_socket_iostream&& other)
: detail::socket_iostream_base<
Protocol, Clock, WaitTraits>(std::move(other)),
std::basic_iostream<char>(std::move(other))
{
this->set_rdbuf(&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_);
}
/// Move-assign a basic_socket_iostream from another.
basic_socket_iostream& operator=(basic_socket_iostream&& other)
{
std::basic_iostream<char>::operator=(std::move(other));
detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::operator=(std::move(other));
return *this;
}
#endif // defined(ASIO_HAS_STD_IOSTREAM_MOVE)
// || defined(GENERATING_DOCUMENTATION)
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
#if defined(GENERATING_DOCUMENTATION)
/// Establish a connection to an endpoint corresponding to a resolver query.
/**
* This constructor automatically establishes a connection based on the
* supplied resolver query parameters. The arguments are used to construct
* a resolver query object.
*/
template <typename T1, ..., typename TN>
explicit basic_socket_iostream(T1 t1, ..., TN tn);
#elif defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename... T>
explicit basic_socket_iostream(T... x)
: std::basic_iostream<char>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_)
{
this->setf(std::ios_base::unitbuf);
if (rdbuf()->connect(x...) == 0)
this->setstate(std::ios_base::failbit);
}
#else
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_CTR_DEF)
#endif
#if defined(GENERATING_DOCUMENTATION)
/// Establish a connection to an endpoint corresponding to a resolver query.
/**
* This function automatically establishes a connection based on the supplied
* resolver query parameters. The arguments are used to construct a resolver
* query object.
*/
template <typename T1, ..., typename TN>
void connect(T1 t1, ..., TN tn);
#elif defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename... T>
void connect(T... x)
{
if (rdbuf()->connect(x...) == 0)
this->setstate(std::ios_base::failbit);
}
#else
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_CONNECT_DEF)
#endif
/// Close the connection.
void close()
{
if (rdbuf()->close() == 0)
this->setstate(std::ios_base::failbit);
}
/// Return a pointer to the underlying streambuf.
basic_socket_streambuf<Protocol, Clock, WaitTraits>* rdbuf() const
{
return const_cast<basic_socket_streambuf<Protocol, Clock, WaitTraits>*>(
&this->detail::socket_iostream_base<
Protocol, Clock, WaitTraits>::streambuf_);
}
/// Get a reference to the underlying socket.
basic_socket<Protocol>& socket()
{
return rdbuf()->socket();
}
/// Get the last error associated with the stream.
/**
* @return An \c error_code corresponding to the last error from the stream.
*
* @par Example
* To print the error associated with a failure to establish a connection:
* @code tcp::iostream s("www.boost.org", "http");
* if (!s)
* {
* std::cout << "Error: " << s.error().message() << std::endl;
* } @endcode
*/
const asio::error_code& error() const
{
return rdbuf()->error();
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the stream's expiry time as an absolute
/// time.
/**
* @return An absolute time value representing the stream's expiry time.
*/
time_point expires_at() const
{
return rdbuf()->expires_at();
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Get the stream's expiry time as an absolute time.
/**
* @return An absolute time value representing the stream's expiry time.
*/
time_point expiry() const
{
return rdbuf()->expiry();
}
/// Set the stream's expiry time as an absolute time.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the stream.
*/
void expires_at(const time_point& expiry_time)
{
rdbuf()->expires_at(expiry_time);
}
/// Set the stream's expiry time relative to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_after(const duration& expiry_time)
{
rdbuf()->expires_after(expiry_time);
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the stream's expiry time relative to now.
/**
* @return A relative time value representing the stream's expiry time.
*/
duration expires_from_now() const
{
return rdbuf()->expires_from_now();
}
/// (Deprecated: Use expires_after().) Set the stream's expiry time relative
/// to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_from_now(const duration& expiry_time)
{
rdbuf()->expires_from_now(expiry_time);
}
#endif // !defined(ASIO_NO_DEPRECATED)
private:
// Disallow copying and assignment.
basic_socket_iostream(const basic_socket_iostream&) ASIO_DELETED;
basic_socket_iostream& operator=(
const basic_socket_iostream&) ASIO_DELETED;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if !defined(ASIO_HAS_VARIADIC_TEMPLATES)
# undef ASIO_PRIVATE_CTR_DEF
# undef ASIO_PRIVATE_CONNECT_DEF
#endif // !defined(ASIO_HAS_VARIADIC_TEMPLATES)
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_BASIC_SOCKET_IOSTREAM_HPP

View File

@ -1,687 +0,0 @@
//
// basic_socket_streambuf.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_SOCKET_STREAMBUF_HPP
#define ASIO_BASIC_SOCKET_STREAMBUF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include <streambuf>
#include <vector>
#include "asio/basic_socket.hpp"
#include "asio/basic_stream_socket.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/io_context.hpp"
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
# include "asio/detail/deadline_timer_service.hpp"
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
# include "asio/steady_timer.hpp"
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
#if !defined(ASIO_HAS_VARIADIC_TEMPLATES)
# include "asio/detail/variadic_templates.hpp"
// A macro that should expand to:
// template <typename T1, ..., typename Tn>
// basic_socket_streambuf* connect(T1 x1, ..., Tn xn)
// {
// init_buffers();
// typedef typename Protocol::resolver resolver_type;
// resolver_type resolver(socket().get_executor());
// connect_to_endpoints(
// resolver.resolve(x1, ..., xn, ec_));
// return !ec_ ? this : 0;
// }
// This macro should only persist within this file.
# define ASIO_PRIVATE_CONNECT_DEF(n) \
template <ASIO_VARIADIC_TPARAMS(n)> \
basic_socket_streambuf* connect(ASIO_VARIADIC_BYVAL_PARAMS(n)) \
{ \
init_buffers(); \
typedef typename Protocol::resolver resolver_type; \
resolver_type resolver(socket().get_executor()); \
connect_to_endpoints( \
resolver.resolve(ASIO_VARIADIC_BYVAL_ARGS(n), ec_)); \
return !ec_ ? this : 0; \
} \
/**/
#endif // !defined(ASIO_HAS_VARIADIC_TEMPLATES)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// A separate base class is used to ensure that the io_context member is
// initialised prior to the basic_socket_streambuf's basic_socket base class.
class socket_streambuf_io_context
{
protected:
socket_streambuf_io_context(io_context* ctx)
: default_io_context_(ctx)
{
}
shared_ptr<io_context> default_io_context_;
};
// A separate base class is used to ensure that the dynamically allocated
// buffers are constructed prior to the basic_socket_streambuf's basic_socket
// base class. This makes moving the socket is the last potentially throwing
// step in the streambuf's move constructor, giving the constructor a strong
// exception safety guarantee.
class socket_streambuf_buffers
{
protected:
socket_streambuf_buffers()
: get_buffer_(buffer_size),
put_buffer_(buffer_size)
{
}
enum { buffer_size = 512 };
std::vector<char> get_buffer_;
std::vector<char> put_buffer_;
};
} // namespace detail
#if !defined(ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL)
#define ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Protocol,
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = boost::posix_time::ptime,
typename WaitTraits = time_traits<Clock> >
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock> >
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
class basic_socket_streambuf;
#endif // !defined(ASIO_BASIC_SOCKET_STREAMBUF_FWD_DECL)
/// Iostream streambuf for a socket.
#if defined(GENERATING_DOCUMENTATION)
template <typename Protocol,
typename Clock = chrono::steady_clock,
typename WaitTraits = wait_traits<Clock> >
#else // defined(GENERATING_DOCUMENTATION)
template <typename Protocol, typename Clock, typename WaitTraits>
#endif // defined(GENERATING_DOCUMENTATION)
class basic_socket_streambuf
: public std::streambuf,
private detail::socket_streambuf_io_context,
private detail::socket_streambuf_buffers,
#if defined(ASIO_NO_DEPRECATED) || defined(GENERATING_DOCUMENTATION)
private basic_socket<Protocol>
#else // defined(ASIO_NO_DEPRECATED) || defined(GENERATING_DOCUMENTATION)
public basic_socket<Protocol>
#endif // defined(ASIO_NO_DEPRECATED) || defined(GENERATING_DOCUMENTATION)
{
private:
// These typedefs are intended keep this class's implementation independent
// of whether it's using Boost.DateClock, Boost.Chrono or std::chrono.
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef WaitTraits traits_helper;
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
typedef detail::chrono_time_traits<Clock, WaitTraits> traits_helper;
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
public:
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// The clock type.
typedef Clock clock_type;
#if defined(GENERATING_DOCUMENTATION)
/// (Deprecated: Use time_point.) The time type.
typedef typename WaitTraits::time_type time_type;
/// The time type.
typedef typename WaitTraits::time_point time_point;
/// (Deprecated: Use duration.) The duration type.
typedef typename WaitTraits::duration_type duration_type;
/// The duration type.
typedef typename WaitTraits::duration duration;
#else
# if !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_type;
typedef typename traits_helper::duration_type duration_type;
# endif // !defined(ASIO_NO_DEPRECATED)
typedef typename traits_helper::time_type time_point;
typedef typename traits_helper::duration_type duration;
#endif
/// Construct a basic_socket_streambuf without establishing a connection.
basic_socket_streambuf()
: detail::socket_streambuf_io_context(new io_context),
basic_socket<Protocol>(*default_io_context_),
expiry_time_(max_expiry_time())
{
init_buffers();
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Construct a basic_socket_streambuf from the supplied socket.
explicit basic_socket_streambuf(basic_stream_socket<protocol_type> s)
: detail::socket_streambuf_io_context(0),
basic_socket<Protocol>(std::move(s)),
expiry_time_(max_expiry_time())
{
init_buffers();
}
/// Move-construct a basic_socket_streambuf from another.
basic_socket_streambuf(basic_socket_streambuf&& other)
: detail::socket_streambuf_io_context(other),
basic_socket<Protocol>(std::move(other.socket())),
ec_(other.ec_),
expiry_time_(other.expiry_time_)
{
get_buffer_.swap(other.get_buffer_);
put_buffer_.swap(other.put_buffer_);
setg(other.eback(), other.gptr(), other.egptr());
setp(other.pptr(), other.epptr());
other.ec_ = asio::error_code();
other.expiry_time_ = max_expiry_time();
other.init_buffers();
}
/// Move-assign a basic_socket_streambuf from another.
basic_socket_streambuf& operator=(basic_socket_streambuf&& other)
{
this->close();
socket() = std::move(other.socket());
detail::socket_streambuf_io_context::operator=(other);
ec_ = other.ec_;
expiry_time_ = other.expiry_time_;
get_buffer_.swap(other.get_buffer_);
put_buffer_.swap(other.put_buffer_);
setg(other.eback(), other.gptr(), other.egptr());
setp(other.pptr(), other.epptr());
other.ec_ = asio::error_code();
other.expiry_time_ = max_expiry_time();
other.put_buffer_.resize(buffer_size);
other.init_buffers();
return *this;
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destructor flushes buffered data.
virtual ~basic_socket_streambuf()
{
if (pptr() != pbase())
overflow(traits_type::eof());
}
/// Establish a connection.
/**
* This function establishes a connection to the specified endpoint.
*
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
basic_socket_streambuf* connect(const endpoint_type& endpoint)
{
init_buffers();
ec_ = asio::error_code();
this->connect_to_endpoints(&endpoint, &endpoint + 1);
return !ec_ ? this : 0;
}
#if defined(GENERATING_DOCUMENTATION)
/// Establish a connection.
/**
* This function automatically establishes a connection based on the supplied
* resolver query parameters. The arguments are used to construct a resolver
* query object.
*
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
template <typename T1, ..., typename TN>
basic_socket_streambuf* connect(T1 t1, ..., TN tn);
#elif defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename... T>
basic_socket_streambuf* connect(T... x)
{
init_buffers();
typedef typename Protocol::resolver resolver_type;
resolver_type resolver(socket().get_executor());
connect_to_endpoints(resolver.resolve(x..., ec_));
return !ec_ ? this : 0;
}
#else
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_CONNECT_DEF)
#endif
/// Close the connection.
/**
* @return \c this if a connection was successfully established, a null
* pointer otherwise.
*/
basic_socket_streambuf* close()
{
sync();
socket().close(ec_);
if (!ec_)
init_buffers();
return !ec_ ? this : 0;
}
/// Get a reference to the underlying socket.
basic_socket<Protocol>& socket()
{
return *this;
}
/// Get the last error associated with the stream buffer.
/**
* @return An \c error_code corresponding to the last error from the stream
* buffer.
*/
const asio::error_code& error() const
{
return ec_;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use error().) Get the last error associated with the stream
/// buffer.
/**
* @return An \c error_code corresponding to the last error from the stream
* buffer.
*/
const asio::error_code& puberror() const
{
return error();
}
/// (Deprecated: Use expiry().) Get the stream buffer's expiry time as an
/// absolute time.
/**
* @return An absolute time value representing the stream buffer's expiry
* time.
*/
time_point expires_at() const
{
return expiry_time_;
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Get the stream buffer's expiry time as an absolute time.
/**
* @return An absolute time value representing the stream buffer's expiry
* time.
*/
time_point expiry() const
{
return expiry_time_;
}
/// Set the stream buffer's expiry time as an absolute time.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the stream.
*/
void expires_at(const time_point& expiry_time)
{
expiry_time_ = expiry_time;
}
/// Set the stream buffer's expiry time relative to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_after(const duration& expiry_time)
{
expiry_time_ = traits_helper::add(traits_helper::now(), expiry_time);
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the stream buffer's expiry time relative
/// to now.
/**
* @return A relative time value representing the stream buffer's expiry time.
*/
duration expires_from_now() const
{
return traits_helper::subtract(expires_at(), traits_helper::now());
}
/// (Deprecated: Use expires_after().) Set the stream buffer's expiry time
/// relative to now.
/**
* This function sets the expiry time associated with the stream. Stream
* operations performed after this time (where the operations cannot be
* completed using the internal buffers) will fail with the error
* asio::error::operation_aborted.
*
* @param expiry_time The expiry time to be used for the timer.
*/
void expires_from_now(const duration& expiry_time)
{
expiry_time_ = traits_helper::add(traits_helper::now(), expiry_time);
}
#endif // !defined(ASIO_NO_DEPRECATED)
protected:
int_type underflow()
{
#if defined(ASIO_WINDOWS_RUNTIME)
ec_ = asio::error::operation_not_supported;
return traits_type::eof();
#else // defined(ASIO_WINDOWS_RUNTIME)
if (gptr() != egptr())
return traits_type::eof();
for (;;)
{
// Check if we are past the expiry time.
if (traits_helper::less_than(expiry_time_, traits_helper::now()))
{
ec_ = asio::error::timed_out;
return traits_type::eof();
}
// Try to complete the operation without blocking.
if (!socket().native_non_blocking())
socket().native_non_blocking(true, ec_);
detail::buffer_sequence_adapter<mutable_buffer, mutable_buffer>
bufs(asio::buffer(get_buffer_) + putback_max);
detail::signed_size_type bytes = detail::socket_ops::recv(
socket().native_handle(), bufs.buffers(), bufs.count(), 0, ec_);
// Check if operation succeeded.
if (bytes > 0)
{
setg(&get_buffer_[0], &get_buffer_[0] + putback_max,
&get_buffer_[0] + putback_max + bytes);
return traits_type::to_int_type(*gptr());
}
// Check for EOF.
if (bytes == 0)
{
ec_ = asio::error::eof;
return traits_type::eof();
}
// Operation failed.
if (ec_ != asio::error::would_block
&& ec_ != asio::error::try_again)
return traits_type::eof();
// Wait for socket to become ready.
if (detail::socket_ops::poll_read(
socket().native_handle(), 0, timeout(), ec_) < 0)
return traits_type::eof();
}
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
int_type overflow(int_type c)
{
#if defined(ASIO_WINDOWS_RUNTIME)
ec_ = asio::error::operation_not_supported;
return traits_type::eof();
#else // defined(ASIO_WINDOWS_RUNTIME)
char_type ch = traits_type::to_char_type(c);
// Determine what needs to be sent.
const_buffer output_buffer;
if (put_buffer_.empty())
{
if (traits_type::eq_int_type(c, traits_type::eof()))
return traits_type::not_eof(c); // Nothing to do.
output_buffer = asio::buffer(&ch, sizeof(char_type));
}
else
{
output_buffer = asio::buffer(pbase(),
(pptr() - pbase()) * sizeof(char_type));
}
while (output_buffer.size() > 0)
{
// Check if we are past the expiry time.
if (traits_helper::less_than(expiry_time_, traits_helper::now()))
{
ec_ = asio::error::timed_out;
return traits_type::eof();
}
// Try to complete the operation without blocking.
if (!socket().native_non_blocking())
socket().native_non_blocking(true, ec_);
detail::buffer_sequence_adapter<
const_buffer, const_buffer> bufs(output_buffer);
detail::signed_size_type bytes = detail::socket_ops::send(
socket().native_handle(), bufs.buffers(), bufs.count(), 0, ec_);
// Check if operation succeeded.
if (bytes > 0)
{
output_buffer += static_cast<std::size_t>(bytes);
continue;
}
// Operation failed.
if (ec_ != asio::error::would_block
&& ec_ != asio::error::try_again)
return traits_type::eof();
// Wait for socket to become ready.
if (detail::socket_ops::poll_write(
socket().native_handle(), 0, timeout(), ec_) < 0)
return traits_type::eof();
}
if (!put_buffer_.empty())
{
setp(&put_buffer_[0], &put_buffer_[0] + put_buffer_.size());
// If the new character is eof then our work here is done.
if (traits_type::eq_int_type(c, traits_type::eof()))
return traits_type::not_eof(c);
// Add the new character to the output buffer.
*pptr() = ch;
pbump(1);
}
return c;
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
int sync()
{
return overflow(traits_type::eof());
}
std::streambuf* setbuf(char_type* s, std::streamsize n)
{
if (pptr() == pbase() && s == 0 && n == 0)
{
put_buffer_.clear();
setp(0, 0);
sync();
return this;
}
return 0;
}
private:
// Disallow copying and assignment.
basic_socket_streambuf(const basic_socket_streambuf&) ASIO_DELETED;
basic_socket_streambuf& operator=(
const basic_socket_streambuf&) ASIO_DELETED;
void init_buffers()
{
setg(&get_buffer_[0],
&get_buffer_[0] + putback_max,
&get_buffer_[0] + putback_max);
if (put_buffer_.empty())
setp(0, 0);
else
setp(&put_buffer_[0], &put_buffer_[0] + put_buffer_.size());
}
int timeout() const
{
int64_t msec = traits_helper::to_posix_duration(
traits_helper::subtract(expiry_time_,
traits_helper::now())).total_milliseconds();
if (msec > (std::numeric_limits<int>::max)())
msec = (std::numeric_limits<int>::max)();
else if (msec < 0)
msec = 0;
return static_cast<int>(msec);
}
template <typename EndpointSequence>
void connect_to_endpoints(const EndpointSequence& endpoints)
{
this->connect_to_endpoints(endpoints.begin(), endpoints.end());
}
template <typename EndpointIterator>
void connect_to_endpoints(EndpointIterator begin, EndpointIterator end)
{
#if defined(ASIO_WINDOWS_RUNTIME)
ec_ = asio::error::operation_not_supported;
#else // defined(ASIO_WINDOWS_RUNTIME)
if (ec_)
return;
ec_ = asio::error::not_found;
for (EndpointIterator i = begin; i != end; ++i)
{
// Check if we are past the expiry time.
if (traits_helper::less_than(expiry_time_, traits_helper::now()))
{
ec_ = asio::error::timed_out;
return;
}
// Close and reopen the socket.
typename Protocol::endpoint ep(*i);
socket().close(ec_);
socket().open(ep.protocol(), ec_);
if (ec_)
continue;
// Try to complete the operation without blocking.
if (!socket().native_non_blocking())
socket().native_non_blocking(true, ec_);
detail::socket_ops::connect(socket().native_handle(),
ep.data(), ep.size(), ec_);
// Check if operation succeeded.
if (!ec_)
return;
// Operation failed.
if (ec_ != asio::error::in_progress
&& ec_ != asio::error::would_block)
continue;
// Wait for socket to become ready.
if (detail::socket_ops::poll_connect(
socket().native_handle(), timeout(), ec_) < 0)
continue;
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (detail::socket_ops::getsockopt(socket().native_handle(), 0,
SOL_SOCKET, SO_ERROR, &connect_error, &connect_error_len, ec_)
== detail::socket_error_retval)
return;
// Check the result of the connect operation.
ec_ = asio::error_code(connect_error,
asio::error::get_system_category());
if (!ec_)
return;
}
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
// Helper function to get the maximum expiry time.
static time_point max_expiry_time()
{
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
&& defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
return boost::posix_time::pos_infin;
#else // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
return (time_point::max)();
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// && defined(ASIO_USE_BOOST_DATE_TIME_FOR_SOCKET_IOSTREAM)
}
enum { putback_max = 8 };
asio::error_code ec_;
time_point expiry_time_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if !defined(ASIO_HAS_VARIADIC_TEMPLATES)
# undef ASIO_PRIVATE_CONNECT_DEF
#endif // !defined(ASIO_HAS_VARIADIC_TEMPLATES)
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_BASIC_SOCKET_STREAMBUF_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,452 +0,0 @@
//
// basic_streambuf.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_STREAMBUF_HPP
#define ASIO_BASIC_STREAMBUF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include <algorithm>
#include <cstring>
#include <stdexcept>
#include <streambuf>
#include <vector>
#include "asio/basic_streambuf_fwd.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/limits.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/throw_exception.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Automatically resizable buffer class based on std::streambuf.
/**
* The @c basic_streambuf class is derived from @c std::streambuf to associate
* the streambuf's input and output sequences with one or more character
* arrays. These character arrays are internal to the @c basic_streambuf
* object, but direct access to the array elements is provided to permit them
* to be used efficiently with I/O operations. Characters written to the output
* sequence of a @c basic_streambuf object are appended to the input sequence
* of the same object.
*
* The @c basic_streambuf class's public interface is intended to permit the
* following implementation strategies:
*
* @li A single contiguous character array, which is reallocated as necessary
* to accommodate changes in the size of the character sequence. This is the
* implementation approach currently used in Asio.
*
* @li A sequence of one or more character arrays, where each array is of the
* same size. Additional character array objects are appended to the sequence
* to accommodate changes in the size of the character sequence.
*
* @li A sequence of one or more character arrays of varying sizes. Additional
* character array objects are appended to the sequence to accommodate changes
* in the size of the character sequence.
*
* The constructor for basic_streambuf accepts a @c size_t argument specifying
* the maximum of the sum of the sizes of the input sequence and output
* sequence. During the lifetime of the @c basic_streambuf object, the following
* invariant holds:
* @code size() <= max_size()@endcode
* Any member function that would, if successful, cause the invariant to be
* violated shall throw an exception of class @c std::length_error.
*
* The constructor for @c basic_streambuf takes an Allocator argument. A copy
* of this argument is used for any memory allocation performed, by the
* constructor and by all member functions, during the lifetime of each @c
* basic_streambuf object.
*
* @par Examples
* Writing directly from an streambuf to a socket:
* @code
* asio::streambuf b;
* std::ostream os(&b);
* os << "Hello, World!\n";
*
* // try sending some data in input sequence
* size_t n = sock.send(b.data());
*
* b.consume(n); // sent data is removed from input sequence
* @endcode
*
* Reading from a socket directly into a streambuf:
* @code
* asio::streambuf b;
*
* // reserve 512 bytes in output sequence
* asio::streambuf::mutable_buffers_type bufs = b.prepare(512);
*
* size_t n = sock.receive(bufs);
*
* // received data is "committed" from output sequence to input sequence
* b.commit(n);
*
* std::istream is(&b);
* std::string s;
* is >> s;
* @endcode
*/
#if defined(GENERATING_DOCUMENTATION)
template <typename Allocator = std::allocator<char> >
#else
template <typename Allocator>
#endif
class basic_streambuf
: public std::streambuf,
private noncopyable
{
public:
#if defined(GENERATING_DOCUMENTATION)
/// The type used to represent the input sequence as a list of buffers.
typedef implementation_defined const_buffers_type;
/// The type used to represent the output sequence as a list of buffers.
typedef implementation_defined mutable_buffers_type;
#else
typedef ASIO_CONST_BUFFER const_buffers_type;
typedef ASIO_MUTABLE_BUFFER mutable_buffers_type;
#endif
/// Construct a basic_streambuf object.
/**
* Constructs a streambuf with the specified maximum size. The initial size
* of the streambuf's input sequence is 0.
*/
explicit basic_streambuf(
std::size_t maximum_size = (std::numeric_limits<std::size_t>::max)(),
const Allocator& allocator = Allocator())
: max_size_(maximum_size),
buffer_(allocator)
{
std::size_t pend = (std::min<std::size_t>)(max_size_, buffer_delta);
buffer_.resize((std::max<std::size_t>)(pend, 1));
setg(&buffer_[0], &buffer_[0], &buffer_[0]);
setp(&buffer_[0], &buffer_[0] + pend);
}
/// Get the size of the input sequence.
/**
* @returns The size of the input sequence. The value is equal to that
* calculated for @c s in the following code:
* @code
* size_t s = 0;
* const_buffers_type bufs = data();
* const_buffers_type::const_iterator i = bufs.begin();
* while (i != bufs.end())
* {
* const_buffer buf(*i++);
* s += buf.size();
* }
* @endcode
*/
std::size_t size() const ASIO_NOEXCEPT
{
return pptr() - gptr();
}
/// Get the maximum size of the basic_streambuf.
/**
* @returns The allowed maximum of the sum of the sizes of the input sequence
* and output sequence.
*/
std::size_t max_size() const ASIO_NOEXCEPT
{
return max_size_;
}
/// Get the current capacity of the basic_streambuf.
/**
* @returns The current total capacity of the streambuf, i.e. for both the
* input sequence and output sequence.
*/
std::size_t capacity() const ASIO_NOEXCEPT
{
return buffer_.capacity();
}
/// Get a list of buffers that represents the input sequence.
/**
* @returns An object of type @c const_buffers_type that satisfies
* ConstBufferSequence requirements, representing all character arrays in the
* input sequence.
*
* @note The returned object is invalidated by any @c basic_streambuf member
* function that modifies the input sequence or output sequence.
*/
const_buffers_type data() const ASIO_NOEXCEPT
{
return asio::buffer(asio::const_buffer(gptr(),
(pptr() - gptr()) * sizeof(char_type)));
}
/// Get a list of buffers that represents the output sequence, with the given
/// size.
/**
* Ensures that the output sequence can accommodate @c n characters,
* reallocating character array objects as necessary.
*
* @returns An object of type @c mutable_buffers_type that satisfies
* MutableBufferSequence requirements, representing character array objects
* at the start of the output sequence such that the sum of the buffer sizes
* is @c n.
*
* @throws std::length_error If <tt>size() + n > max_size()</tt>.
*
* @note The returned object is invalidated by any @c basic_streambuf member
* function that modifies the input sequence or output sequence.
*/
mutable_buffers_type prepare(std::size_t n)
{
reserve(n);
return asio::buffer(asio::mutable_buffer(
pptr(), n * sizeof(char_type)));
}
/// Move characters from the output sequence to the input sequence.
/**
* Appends @c n characters from the start of the output sequence to the input
* sequence. The beginning of the output sequence is advanced by @c n
* characters.
*
* Requires a preceding call <tt>prepare(x)</tt> where <tt>x >= n</tt>, and
* no intervening operations that modify the input or output sequence.
*
* @note If @c n is greater than the size of the output sequence, the entire
* output sequence is moved to the input sequence and no error is issued.
*/
void commit(std::size_t n)
{
n = std::min<std::size_t>(n, epptr() - pptr());
pbump(static_cast<int>(n));
setg(eback(), gptr(), pptr());
}
/// Remove characters from the input sequence.
/**
* Removes @c n characters from the beginning of the input sequence.
*
* @note If @c n is greater than the size of the input sequence, the entire
* input sequence is consumed and no error is issued.
*/
void consume(std::size_t n)
{
if (egptr() < pptr())
setg(&buffer_[0], gptr(), pptr());
if (gptr() + n > pptr())
n = pptr() - gptr();
gbump(static_cast<int>(n));
}
protected:
enum { buffer_delta = 128 };
/// Override std::streambuf behaviour.
/**
* Behaves according to the specification of @c std::streambuf::underflow().
*/
int_type underflow()
{
if (gptr() < pptr())
{
setg(&buffer_[0], gptr(), pptr());
return traits_type::to_int_type(*gptr());
}
else
{
return traits_type::eof();
}
}
/// Override std::streambuf behaviour.
/**
* Behaves according to the specification of @c std::streambuf::overflow(),
* with the specialisation that @c std::length_error is thrown if appending
* the character to the input sequence would require the condition
* <tt>size() > max_size()</tt> to be true.
*/
int_type overflow(int_type c)
{
if (!traits_type::eq_int_type(c, traits_type::eof()))
{
if (pptr() == epptr())
{
std::size_t buffer_size = pptr() - gptr();
if (buffer_size < max_size_ && max_size_ - buffer_size < buffer_delta)
{
reserve(max_size_ - buffer_size);
}
else
{
reserve(buffer_delta);
}
}
*pptr() = traits_type::to_char_type(c);
pbump(1);
return c;
}
return traits_type::not_eof(c);
}
void reserve(std::size_t n)
{
// Get current stream positions as offsets.
std::size_t gnext = gptr() - &buffer_[0];
std::size_t pnext = pptr() - &buffer_[0];
std::size_t pend = epptr() - &buffer_[0];
// Check if there is already enough space in the put area.
if (n <= pend - pnext)
{
return;
}
// Shift existing contents of get area to start of buffer.
if (gnext > 0)
{
pnext -= gnext;
std::memmove(&buffer_[0], &buffer_[0] + gnext, pnext);
}
// Ensure buffer is large enough to hold at least the specified size.
if (n > pend - pnext)
{
if (n <= max_size_ && pnext <= max_size_ - n)
{
pend = pnext + n;
buffer_.resize((std::max<std::size_t>)(pend, 1));
}
else
{
std::length_error ex("asio::streambuf too long");
asio::detail::throw_exception(ex);
}
}
// Update stream positions.
setg(&buffer_[0], &buffer_[0], &buffer_[0] + pnext);
setp(&buffer_[0] + pnext, &buffer_[0] + pend);
}
private:
std::size_t max_size_;
std::vector<char_type, Allocator> buffer_;
// Helper function to get the preferred size for reading data.
friend std::size_t read_size_helper(
basic_streambuf& sb, std::size_t max_size)
{
return std::min<std::size_t>(
std::max<std::size_t>(512, sb.buffer_.capacity() - sb.size()),
std::min<std::size_t>(max_size, sb.max_size() - sb.size()));
}
};
/// Adapts basic_streambuf to the dynamic buffer sequence type requirements.
#if defined(GENERATING_DOCUMENTATION)
template <typename Allocator = std::allocator<char> >
#else
template <typename Allocator>
#endif
class basic_streambuf_ref
{
public:
/// The type used to represent the input sequence as a list of buffers.
typedef typename basic_streambuf<Allocator>::const_buffers_type
const_buffers_type;
/// The type used to represent the output sequence as a list of buffers.
typedef typename basic_streambuf<Allocator>::mutable_buffers_type
mutable_buffers_type;
/// Construct a basic_streambuf_ref for the given basic_streambuf object.
explicit basic_streambuf_ref(basic_streambuf<Allocator>& sb)
: sb_(sb)
{
}
/// Copy construct a basic_streambuf_ref.
basic_streambuf_ref(const basic_streambuf_ref& other) ASIO_NOEXCEPT
: sb_(other.sb_)
{
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move construct a basic_streambuf_ref.
basic_streambuf_ref(basic_streambuf_ref&& other) ASIO_NOEXCEPT
: sb_(other.sb_)
{
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Get the size of the input sequence.
std::size_t size() const ASIO_NOEXCEPT
{
return sb_.size();
}
/// Get the maximum size of the dynamic buffer.
std::size_t max_size() const ASIO_NOEXCEPT
{
return sb_.max_size();
}
/// Get the current capacity of the dynamic buffer.
std::size_t capacity() const ASIO_NOEXCEPT
{
return sb_.capacity();
}
/// Get a list of buffers that represents the input sequence.
const_buffers_type data() const ASIO_NOEXCEPT
{
return sb_.data();
}
/// Get a list of buffers that represents the output sequence, with the given
/// size.
mutable_buffers_type prepare(std::size_t n)
{
return sb_.prepare(n);
}
/// Move bytes from the output sequence to the input sequence.
void commit(std::size_t n)
{
return sb_.commit(n);
}
/// Remove characters from the input sequence.
void consume(std::size_t n)
{
return sb_.consume(n);
}
private:
basic_streambuf<Allocator>& sb_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_BASIC_STREAMBUF_HPP

View File

@ -1,36 +0,0 @@
//
// basic_streambuf_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_STREAMBUF_FWD_HPP
#define ASIO_BASIC_STREAMBUF_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_NO_IOSTREAM)
#include <memory>
namespace asio {
template <typename Allocator = std::allocator<char> >
class basic_streambuf;
template <typename Allocator = std::allocator<char> >
class basic_streambuf_ref;
} // namespace asio
#endif // !defined(ASIO_NO_IOSTREAM)
#endif // ASIO_BASIC_STREAMBUF_FWD_HPP

View File

@ -1,811 +0,0 @@
//
// basic_waitable_timer.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BASIC_WAITABLE_TIMER_HPP
#define ASIO_BASIC_WAITABLE_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/any_io_executor.hpp"
#include "asio/detail/chrono_time_traits.hpp"
#include "asio/detail/deadline_timer_service.hpp"
#include "asio/detail/handler_type_requirements.hpp"
#include "asio/detail/io_object_impl.hpp"
#include "asio/detail/non_const_lvalue.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/wait_traits.hpp"
#if defined(ASIO_HAS_MOVE)
# include <utility>
#endif // defined(ASIO_HAS_MOVE)
#include "asio/detail/push_options.hpp"
namespace asio {
#if !defined(ASIO_BASIC_WAITABLE_TIMER_FWD_DECL)
#define ASIO_BASIC_WAITABLE_TIMER_FWD_DECL
// Forward declaration with defaulted arguments.
template <typename Clock,
typename WaitTraits = asio::wait_traits<Clock>,
typename Executor = any_io_executor>
class basic_waitable_timer;
#endif // !defined(ASIO_BASIC_WAITABLE_TIMER_FWD_DECL)
/// Provides waitable timer functionality.
/**
* The basic_waitable_timer class template provides the ability to perform a
* blocking or asynchronous wait for a timer to expire.
*
* A waitable timer is always in one of two states: "expired" or "not expired".
* If the wait() or async_wait() function is called on an expired timer, the
* wait operation will complete immediately.
*
* Most applications will use one of the asio::steady_timer,
* asio::system_timer or asio::high_resolution_timer typedefs.
*
* @note This waitable timer functionality is for use with the C++11 standard
* library's @c &lt;chrono&gt; facility, or with the Boost.Chrono library.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Examples
* Performing a blocking wait (C++11):
* @code
* // Construct a timer without setting an expiry time.
* asio::steady_timer timer(my_context);
*
* // Set an expiry time relative to now.
* timer.expires_after(std::chrono::seconds(5));
*
* // Wait for the timer to expire.
* timer.wait();
* @endcode
*
* @par
* Performing an asynchronous wait (C++11):
* @code
* void handler(const asio::error_code& error)
* {
* if (!error)
* {
* // Timer expired.
* }
* }
*
* ...
*
* // Construct a timer with an absolute expiry time.
* asio::steady_timer timer(my_context,
* std::chrono::steady_clock::now() + std::chrono::seconds(60));
*
* // Start an asynchronous wait.
* timer.async_wait(handler);
* @endcode
*
* @par Changing an active waitable timer's expiry time
*
* Changing the expiry time of a timer while there are pending asynchronous
* waits causes those wait operations to be cancelled. To ensure that the action
* associated with the timer is performed only once, use something like this:
* used:
*
* @code
* void on_some_event()
* {
* if (my_timer.expires_after(seconds(5)) > 0)
* {
* // We managed to cancel the timer. Start new asynchronous wait.
* my_timer.async_wait(on_timeout);
* }
* else
* {
* // Too late, timer has already expired!
* }
* }
*
* void on_timeout(const asio::error_code& e)
* {
* if (e != asio::error::operation_aborted)
* {
* // Timer was not cancelled, take necessary action.
* }
* }
* @endcode
*
* @li The asio::basic_waitable_timer::expires_after() function
* cancels any pending asynchronous waits, and returns the number of
* asynchronous waits that were cancelled. If it returns 0 then you were too
* late and the wait handler has already been executed, or will soon be
* executed. If it returns 1 then the wait handler was successfully cancelled.
*
* @li If a wait handler is cancelled, the asio::error_code passed to
* it contains the value asio::error::operation_aborted.
*/
template <typename Clock, typename WaitTraits, typename Executor>
class basic_waitable_timer
{
public:
/// The type of the executor associated with the object.
typedef Executor executor_type;
/// Rebinds the timer type to another executor.
template <typename Executor1>
struct rebind_executor
{
/// The timer type when rebound to the specified executor.
typedef basic_waitable_timer<Clock, WaitTraits, Executor1> other;
};
/// The clock type.
typedef Clock clock_type;
/// The duration type of the clock.
typedef typename clock_type::duration duration;
/// The time point type of the clock.
typedef typename clock_type::time_point time_point;
/// The wait traits type.
typedef WaitTraits traits_type;
/// Constructor.
/**
* This constructor creates a timer without setting an expiry time. The
* expires_at() or expires_after() functions must be called to set an expiry
* time before the timer can be waited on.
*
* @param ex The I/O executor that the timer will use, by default, to
* dispatch handlers for any asynchronous operations performed on the timer.
*/
explicit basic_waitable_timer(const executor_type& ex)
: impl_(0, ex)
{
}
/// Constructor.
/**
* This constructor creates a timer without setting an expiry time. The
* expires_at() or expires_after() functions must be called to set an expiry
* time before the timer can be waited on.
*
* @param context An execution context which provides the I/O executor that
* the timer will use, by default, to dispatch handlers for any asynchronous
* operations performed on the timer.
*/
template <typename ExecutionContext>
explicit basic_waitable_timer(ExecutionContext& context,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
}
/// Constructor to set a particular expiry time as an absolute time.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param ex The I/O executor object that the timer will use, by default, to
* dispatch handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, expressed
* as an absolute time.
*/
basic_waitable_timer(const executor_type& ex, const time_point& expiry_time)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().expires_at(impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
}
/// Constructor to set a particular expiry time as an absolute time.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param context An execution context which provides the I/O executor that
* the timer will use, by default, to dispatch handlers for any asynchronous
* operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, expressed
* as an absolute time.
*/
template <typename ExecutionContext>
explicit basic_waitable_timer(ExecutionContext& context,
const time_point& expiry_time,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().expires_at(impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
}
/// Constructor to set a particular expiry time relative to now.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param ex The I/O executor that the timer will use, by default, to
* dispatch handlers for any asynchronous operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, relative to
* now.
*/
basic_waitable_timer(const executor_type& ex, const duration& expiry_time)
: impl_(0, ex)
{
asio::error_code ec;
impl_.get_service().expires_after(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_after");
}
/// Constructor to set a particular expiry time relative to now.
/**
* This constructor creates a timer and sets the expiry time.
*
* @param context An execution context which provides the I/O executor that
* the timer will use, by default, to dispatch handlers for any asynchronous
* operations performed on the timer.
*
* @param expiry_time The expiry time to be used for the timer, relative to
* now.
*/
template <typename ExecutionContext>
explicit basic_waitable_timer(ExecutionContext& context,
const duration& expiry_time,
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0)
: impl_(0, 0, context)
{
asio::error_code ec;
impl_.get_service().expires_after(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_after");
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_waitable_timer from another.
/**
* This constructor moves a timer from one object to another.
*
* @param other The other basic_waitable_timer object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_waitable_timer(const executor_type&)
* constructor.
*/
basic_waitable_timer(basic_waitable_timer&& other)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_waitable_timer from another.
/**
* This assignment operator moves a timer from one object to another. Cancels
* any outstanding asynchronous operations associated with the target object.
*
* @param other The other basic_waitable_timer object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_waitable_timer(const executor_type&)
* constructor.
*/
basic_waitable_timer& operator=(basic_waitable_timer&& other)
{
impl_ = std::move(other.impl_);
return *this;
}
// All timers have access to each other's implementations.
template <typename Clock1, typename WaitTraits1, typename Executor1>
friend class basic_waitable_timer;
/// Move-construct a basic_waitable_timer from another.
/**
* This constructor moves a timer from one object to another.
*
* @param other The other basic_waitable_timer object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_waitable_timer(const executor_type&)
* constructor.
*/
template <typename Executor1>
basic_waitable_timer(
basic_waitable_timer<Clock, WaitTraits, Executor1>&& other,
typename constraint<
is_convertible<Executor1, Executor>::value
>::type = 0)
: impl_(std::move(other.impl_))
{
}
/// Move-assign a basic_waitable_timer from another.
/**
* This assignment operator moves a timer from one object to another. Cancels
* any outstanding asynchronous operations associated with the target object.
*
* @param other The other basic_waitable_timer object from which the move will
* occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_waitable_timer(const executor_type&)
* constructor.
*/
template <typename Executor1>
typename constraint<
is_convertible<Executor1, Executor>::value,
basic_waitable_timer&
>::type operator=(basic_waitable_timer<Clock, WaitTraits, Executor1>&& other)
{
basic_waitable_timer tmp(std::move(other));
impl_ = std::move(tmp.impl_);
return *this;
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destroys the timer.
/**
* This function destroys the timer, cancelling any outstanding asynchronous
* wait operations associated with the timer as if by calling @c cancel.
*/
~basic_waitable_timer()
{
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return impl_.get_executor();
}
/// Cancel any asynchronous operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel()
{
asio::error_code ec;
std::size_t s = impl_.get_service().cancel(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel");
return s;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use non-error_code overload.) Cancel any asynchronous
/// operations that are waiting on the timer.
/**
* This function forces the completion of any pending asynchronous wait
* operations against the timer. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when cancel() is called, then the
* handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel(asio::error_code& ec)
{
return impl_.get_service().cancel(impl_.get_implementation(), ec);
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Cancels one asynchronous operation that is waiting on the timer.
/**
* This function forces the completion of one pending asynchronous wait
* operation against the timer. Handlers are cancelled in FIFO order. The
* handler for the cancelled operation will be invoked with the
* asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @return The number of asynchronous operations that were cancelled. That is,
* either 0 or 1.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when cancel_one() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel_one()
{
asio::error_code ec;
std::size_t s = impl_.get_service().cancel_one(
impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "cancel_one");
return s;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use non-error_code overload.) Cancels one asynchronous
/// operation that is waiting on the timer.
/**
* This function forces the completion of one pending asynchronous wait
* operation against the timer. Handlers are cancelled in FIFO order. The
* handler for the cancelled operation will be invoked with the
* asio::error::operation_aborted error code.
*
* Cancelling the timer does not change the expiry time.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled. That is,
* either 0 or 1.
*
* @note If the timer has already expired when cancel_one() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t cancel_one(asio::error_code& ec)
{
return impl_.get_service().cancel_one(impl_.get_implementation(), ec);
}
/// (Deprecated: Use expiry().) Get the timer's expiry time as an absolute
/// time.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
time_point expires_at() const
{
return impl_.get_service().expires_at(impl_.get_implementation());
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Get the timer's expiry time as an absolute time.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
time_point expiry() const
{
return impl_.get_service().expiry(impl_.get_implementation());
}
/// Set the timer's expiry time as an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_at() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_at(const time_point& expiry_time)
{
asio::error_code ec;
std::size_t s = impl_.get_service().expires_at(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_at");
return s;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use non-error_code overload.) Set the timer's expiry time as
/// an absolute time.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when expires_at() is called, then
* the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_at(const time_point& expiry_time,
asio::error_code& ec)
{
return impl_.get_service().expires_at(
impl_.get_implementation(), expiry_time, ec);
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Set the timer's expiry time relative to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_after() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_after(const duration& expiry_time)
{
asio::error_code ec;
std::size_t s = impl_.get_service().expires_after(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_after");
return s;
}
#if !defined(ASIO_NO_DEPRECATED)
/// (Deprecated: Use expiry().) Get the timer's expiry time relative to now.
/**
* This function may be used to obtain the timer's current expiry time.
* Whether the timer has expired or not does not affect this value.
*/
duration expires_from_now() const
{
return impl_.get_service().expires_from_now(impl_.get_implementation());
}
/// (Deprecated: Use expires_after().) Set the timer's expiry time relative
/// to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @return The number of asynchronous operations that were cancelled.
*
* @throws asio::system_error Thrown on failure.
*
* @note If the timer has already expired when expires_from_now() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_from_now(const duration& expiry_time)
{
asio::error_code ec;
std::size_t s = impl_.get_service().expires_from_now(
impl_.get_implementation(), expiry_time, ec);
asio::detail::throw_error(ec, "expires_from_now");
return s;
}
/// (Deprecated: Use expires_after().) Set the timer's expiry time relative
/// to now.
/**
* This function sets the expiry time. Any pending asynchronous wait
* operations will be cancelled. The handler for each cancelled operation will
* be invoked with the asio::error::operation_aborted error code.
*
* @param expiry_time The expiry time to be used for the timer.
*
* @param ec Set to indicate what error occurred, if any.
*
* @return The number of asynchronous operations that were cancelled.
*
* @note If the timer has already expired when expires_from_now() is called,
* then the handlers for asynchronous wait operations will:
*
* @li have already been invoked; or
*
* @li have been queued for invocation in the near future.
*
* These handlers can no longer be cancelled, and therefore are passed an
* error code that indicates the successful completion of the wait operation.
*/
std::size_t expires_from_now(const duration& expiry_time,
asio::error_code& ec)
{
return impl_.get_service().expires_from_now(
impl_.get_implementation(), expiry_time, ec);
}
#endif // !defined(ASIO_NO_DEPRECATED)
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @throws asio::system_error Thrown on failure.
*/
void wait()
{
asio::error_code ec;
impl_.get_service().wait(impl_.get_implementation(), ec);
asio::detail::throw_error(ec, "wait");
}
/// Perform a blocking wait on the timer.
/**
* This function is used to wait for the timer to expire. This function
* blocks and does not return until the timer has expired.
*
* @param ec Set to indicate what error occurred, if any.
*/
void wait(asio::error_code& ec)
{
impl_.get_service().wait(impl_.get_implementation(), ec);
}
/// Start an asynchronous wait on the timer.
/**
* This function may be used to initiate an asynchronous wait against the
* timer. It always returns immediately.
*
* For each call to async_wait(), the supplied handler will be called exactly
* once. The handler will be called when:
*
* @li The timer has expired.
*
* @li The timer was cancelled, in which case the handler is passed the error
* code asio::error::operation_aborted.
*
* @param handler The handler to be called when the timer expires. Copies
* will be made of the handler as required. The function signature of the
* handler must be:
* @code void handler(
* const asio::error_code& error // Result of operation.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. On
* immediate completion, invocation of the handler will be performed in a
* manner equivalent to using asio::post().
*/
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code))
WaitHandler ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WaitHandler,
void (asio::error_code))
async_wait(
ASIO_MOVE_ARG(WaitHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return async_initiate<WaitHandler, void (asio::error_code)>(
initiate_async_wait(this), handler);
}
private:
// Disallow copying and assignment.
basic_waitable_timer(const basic_waitable_timer&) ASIO_DELETED;
basic_waitable_timer& operator=(
const basic_waitable_timer&) ASIO_DELETED;
class initiate_async_wait
{
public:
typedef Executor executor_type;
explicit initiate_async_wait(basic_waitable_timer* self)
: self_(self)
{
}
executor_type get_executor() const ASIO_NOEXCEPT
{
return self_->get_executor();
}
template <typename WaitHandler>
void operator()(ASIO_MOVE_ARG(WaitHandler) handler) const
{
// If you get an error on the following line it means that your handler
// does not meet the documented type requirements for a WaitHandler.
ASIO_WAIT_HANDLER_CHECK(WaitHandler, handler) type_check;
detail::non_const_lvalue<WaitHandler> handler2(handler);
self_->impl_.get_service().async_wait(
self_->impl_.get_implementation(),
handler2.value, self_->impl_.get_executor());
}
private:
basic_waitable_timer* self_;
};
detail::io_object_impl<
detail::deadline_timer_service<
detail::chrono_time_traits<Clock, WaitTraits> >,
executor_type > impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BASIC_WAITABLE_TIMER_HPP

View File

@ -1,575 +0,0 @@
//
// bind_executor.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BIND_EXECUTOR_HPP
#define ASIO_BIND_EXECUTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/variadic_templates.hpp"
#include "asio/associated_executor.hpp"
#include "asio/associated_allocator.hpp"
#include "asio/async_result.hpp"
#include "asio/execution/executor.hpp"
#include "asio/execution_context.hpp"
#include "asio/is_executor.hpp"
#include "asio/uses_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper to automatically define nested typedef result_type.
template <typename T, typename = void>
struct executor_binder_result_type
{
protected:
typedef void result_type_or_void;
};
template <typename T>
struct executor_binder_result_type<T,
typename void_type<typename T::result_type>::type>
{
typedef typename T::result_type result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R>
struct executor_binder_result_type<R(*)()>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R>
struct executor_binder_result_type<R(&)()>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1>
struct executor_binder_result_type<R(*)(A1)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1>
struct executor_binder_result_type<R(&)(A1)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1, typename A2>
struct executor_binder_result_type<R(*)(A1, A2)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
template <typename R, typename A1, typename A2>
struct executor_binder_result_type<R(&)(A1, A2)>
{
typedef R result_type;
protected:
typedef result_type result_type_or_void;
};
// Helper to automatically define nested typedef argument_type.
template <typename T, typename = void>
struct executor_binder_argument_type {};
template <typename T>
struct executor_binder_argument_type<T,
typename void_type<typename T::argument_type>::type>
{
typedef typename T::argument_type argument_type;
};
template <typename R, typename A1>
struct executor_binder_argument_type<R(*)(A1)>
{
typedef A1 argument_type;
};
template <typename R, typename A1>
struct executor_binder_argument_type<R(&)(A1)>
{
typedef A1 argument_type;
};
// Helper to automatically define nested typedefs first_argument_type and
// second_argument_type.
template <typename T, typename = void>
struct executor_binder_argument_types {};
template <typename T>
struct executor_binder_argument_types<T,
typename void_type<typename T::first_argument_type>::type>
{
typedef typename T::first_argument_type first_argument_type;
typedef typename T::second_argument_type second_argument_type;
};
template <typename R, typename A1, typename A2>
struct executor_binder_argument_type<R(*)(A1, A2)>
{
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
template <typename R, typename A1, typename A2>
struct executor_binder_argument_type<R(&)(A1, A2)>
{
typedef A1 first_argument_type;
typedef A2 second_argument_type;
};
// Helper to perform uses_executor construction of the target type, if
// required.
template <typename T, typename Executor, bool UsesExecutor>
class executor_binder_base;
template <typename T, typename Executor>
class executor_binder_base<T, Executor, true>
{
protected:
template <typename E, typename U>
executor_binder_base(ASIO_MOVE_ARG(E) e, ASIO_MOVE_ARG(U) u)
: executor_(ASIO_MOVE_CAST(E)(e)),
target_(executor_arg_t(), executor_, ASIO_MOVE_CAST(U)(u))
{
}
Executor executor_;
T target_;
};
template <typename T, typename Executor>
class executor_binder_base<T, Executor, false>
{
protected:
template <typename E, typename U>
executor_binder_base(ASIO_MOVE_ARG(E) e, ASIO_MOVE_ARG(U) u)
: executor_(ASIO_MOVE_CAST(E)(e)),
target_(ASIO_MOVE_CAST(U)(u))
{
}
Executor executor_;
T target_;
};
// Helper to enable SFINAE on zero-argument operator() below.
template <typename T, typename = void>
struct executor_binder_result_of0
{
typedef void type;
};
template <typename T>
struct executor_binder_result_of0<T,
typename void_type<typename result_of<T()>::type>::type>
{
typedef typename result_of<T()>::type type;
};
} // namespace detail
/// A call wrapper type to bind an executor of type @c Executor to an object of
/// type @c T.
template <typename T, typename Executor>
class executor_binder
#if !defined(GENERATING_DOCUMENTATION)
: public detail::executor_binder_result_type<T>,
public detail::executor_binder_argument_type<T>,
public detail::executor_binder_argument_types<T>,
private detail::executor_binder_base<
T, Executor, uses_executor<T, Executor>::value>
#endif // !defined(GENERATING_DOCUMENTATION)
{
public:
/// The type of the target object.
typedef T target_type;
/// The type of the associated executor.
typedef Executor executor_type;
#if defined(GENERATING_DOCUMENTATION)
/// The return type if a function.
/**
* The type of @c result_type is based on the type @c T of the wrapper's
* target object:
*
* @li if @c T is a pointer to function type, @c result_type is a synonym for
* the return type of @c T;
*
* @li if @c T is a class type with a member type @c result_type, then @c
* result_type is a synonym for @c T::result_type;
*
* @li otherwise @c result_type is not defined.
*/
typedef see_below result_type;
/// The type of the function's argument.
/**
* The type of @c argument_type is based on the type @c T of the wrapper's
* target object:
*
* @li if @c T is a pointer to a function type accepting a single argument,
* @c argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c argument_type, then @c
* argument_type is a synonym for @c T::argument_type;
*
* @li otherwise @c argument_type is not defined.
*/
typedef see_below argument_type;
/// The type of the function's first argument.
/**
* The type of @c first_argument_type is based on the type @c T of the
* wrapper's target object:
*
* @li if @c T is a pointer to a function type accepting two arguments, @c
* first_argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c first_argument_type,
* then @c first_argument_type is a synonym for @c T::first_argument_type;
*
* @li otherwise @c first_argument_type is not defined.
*/
typedef see_below first_argument_type;
/// The type of the function's second argument.
/**
* The type of @c second_argument_type is based on the type @c T of the
* wrapper's target object:
*
* @li if @c T is a pointer to a function type accepting two arguments, @c
* second_argument_type is a synonym for the return type of @c T;
*
* @li if @c T is a class type with a member type @c first_argument_type,
* then @c second_argument_type is a synonym for @c T::second_argument_type;
*
* @li otherwise @c second_argument_type is not defined.
*/
typedef see_below second_argument_type;
#endif // defined(GENERATING_DOCUMENTATION)
/// Construct an executor wrapper for the specified object.
/**
* This constructor is only valid if the type @c T is constructible from type
* @c U.
*/
template <typename U>
executor_binder(executor_arg_t, const executor_type& e,
ASIO_MOVE_ARG(U) u)
: base_type(e, ASIO_MOVE_CAST(U)(u))
{
}
/// Copy constructor.
executor_binder(const executor_binder& other)
: base_type(other.get_executor(), other.get())
{
}
/// Construct a copy, but specify a different executor.
executor_binder(executor_arg_t, const executor_type& e,
const executor_binder& other)
: base_type(e, other.get())
{
}
/// Construct a copy of a different executor wrapper type.
/**
* This constructor is only valid if the @c Executor type is constructible
* from type @c OtherExecutor, and the type @c T is constructible from type
* @c U.
*/
template <typename U, typename OtherExecutor>
executor_binder(const executor_binder<U, OtherExecutor>& other)
: base_type(other.get_executor(), other.get())
{
}
/// Construct a copy of a different executor wrapper type, but specify a
/// different executor.
/**
* This constructor is only valid if the type @c T is constructible from type
* @c U.
*/
template <typename U, typename OtherExecutor>
executor_binder(executor_arg_t, const executor_type& e,
const executor_binder<U, OtherExecutor>& other)
: base_type(e, other.get())
{
}
#if defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move constructor.
executor_binder(executor_binder&& other)
: base_type(ASIO_MOVE_CAST(executor_type)(other.get_executor()),
ASIO_MOVE_CAST(T)(other.get()))
{
}
/// Move construct the target object, but specify a different executor.
executor_binder(executor_arg_t, const executor_type& e,
executor_binder&& other)
: base_type(e, ASIO_MOVE_CAST(T)(other.get()))
{
}
/// Move construct from a different executor wrapper type.
template <typename U, typename OtherExecutor>
executor_binder(executor_binder<U, OtherExecutor>&& other)
: base_type(ASIO_MOVE_CAST(OtherExecutor)(other.get_executor()),
ASIO_MOVE_CAST(U)(other.get()))
{
}
/// Move construct from a different executor wrapper type, but specify a
/// different executor.
template <typename U, typename OtherExecutor>
executor_binder(executor_arg_t, const executor_type& e,
executor_binder<U, OtherExecutor>&& other)
: base_type(e, ASIO_MOVE_CAST(U)(other.get()))
{
}
#endif // defined(ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destructor.
~executor_binder()
{
}
/// Obtain a reference to the target object.
target_type& get() ASIO_NOEXCEPT
{
return this->target_;
}
/// Obtain a reference to the target object.
const target_type& get() const ASIO_NOEXCEPT
{
return this->target_;
}
/// Obtain the associated executor.
executor_type get_executor() const ASIO_NOEXCEPT
{
return this->executor_;
}
#if defined(GENERATING_DOCUMENTATION)
template <typename... Args> auto operator()(Args&& ...);
template <typename... Args> auto operator()(Args&& ...) const;
#elif defined(ASIO_HAS_VARIADIC_TEMPLATES)
/// Forwarding function call operator.
template <typename... Args>
typename result_of<T(Args...)>::type operator()(
ASIO_MOVE_ARG(Args)... args)
{
return this->target_(ASIO_MOVE_CAST(Args)(args)...);
}
/// Forwarding function call operator.
template <typename... Args>
typename result_of<T(Args...)>::type operator()(
ASIO_MOVE_ARG(Args)... args) const
{
return this->target_(ASIO_MOVE_CAST(Args)(args)...);
}
#elif defined(ASIO_HAS_STD_TYPE_TRAITS) && !defined(_MSC_VER)
typename detail::executor_binder_result_of0<T>::type operator()()
{
return this->target_();
}
typename detail::executor_binder_result_of0<T>::type operator()() const
{
return this->target_();
}
#define ASIO_PRIVATE_BIND_EXECUTOR_CALL_DEF(n) \
template <ASIO_VARIADIC_TPARAMS(n)> \
typename result_of<T(ASIO_VARIADIC_TARGS(n))>::type operator()( \
ASIO_VARIADIC_MOVE_PARAMS(n)) \
{ \
return this->target_(ASIO_VARIADIC_MOVE_ARGS(n)); \
} \
\
template <ASIO_VARIADIC_TPARAMS(n)> \
typename result_of<T(ASIO_VARIADIC_TARGS(n))>::type operator()( \
ASIO_VARIADIC_MOVE_PARAMS(n)) const \
{ \
return this->target_(ASIO_VARIADIC_MOVE_ARGS(n)); \
} \
/**/
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_BIND_EXECUTOR_CALL_DEF)
#undef ASIO_PRIVATE_BIND_EXECUTOR_CALL_DEF
#else // defined(ASIO_HAS_STD_TYPE_TRAITS) && !defined(_MSC_VER)
typedef typename detail::executor_binder_result_type<T>::result_type_or_void
result_type_or_void;
result_type_or_void operator()()
{
return this->target_();
}
result_type_or_void operator()() const
{
return this->target_();
}
#define ASIO_PRIVATE_BIND_EXECUTOR_CALL_DEF(n) \
template <ASIO_VARIADIC_TPARAMS(n)> \
result_type_or_void operator()( \
ASIO_VARIADIC_MOVE_PARAMS(n)) \
{ \
return this->target_(ASIO_VARIADIC_MOVE_ARGS(n)); \
} \
\
template <ASIO_VARIADIC_TPARAMS(n)> \
result_type_or_void operator()( \
ASIO_VARIADIC_MOVE_PARAMS(n)) const \
{ \
return this->target_(ASIO_VARIADIC_MOVE_ARGS(n)); \
} \
/**/
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_BIND_EXECUTOR_CALL_DEF)
#undef ASIO_PRIVATE_BIND_EXECUTOR_CALL_DEF
#endif // defined(ASIO_HAS_STD_TYPE_TRAITS) && !defined(_MSC_VER)
private:
typedef detail::executor_binder_base<T, Executor,
uses_executor<T, Executor>::value> base_type;
};
/// Associate an object of type @c T with an executor of type @c Executor.
template <typename Executor, typename T>
inline executor_binder<typename decay<T>::type, Executor>
bind_executor(const Executor& ex, ASIO_MOVE_ARG(T) t,
typename constraint<
is_executor<Executor>::value || execution::is_executor<Executor>::value
>::type = 0)
{
return executor_binder<typename decay<T>::type, Executor>(
executor_arg_t(), ex, ASIO_MOVE_CAST(T)(t));
}
/// Associate an object of type @c T with an execution context's executor.
template <typename ExecutionContext, typename T>
inline executor_binder<typename decay<T>::type,
typename ExecutionContext::executor_type>
bind_executor(ExecutionContext& ctx, ASIO_MOVE_ARG(T) t,
typename constraint<is_convertible<
ExecutionContext&, execution_context&>::value>::type = 0)
{
return executor_binder<typename decay<T>::type,
typename ExecutionContext::executor_type>(
executor_arg_t(), ctx.get_executor(), ASIO_MOVE_CAST(T)(t));
}
#if !defined(GENERATING_DOCUMENTATION)
template <typename T, typename Executor>
struct uses_executor<executor_binder<T, Executor>, Executor>
: true_type {};
template <typename T, typename Executor, typename Signature>
class async_result<executor_binder<T, Executor>, Signature>
{
public:
typedef executor_binder<
typename async_result<T, Signature>::completion_handler_type, Executor>
completion_handler_type;
typedef typename async_result<T, Signature>::return_type return_type;
explicit async_result(executor_binder<T, Executor>& b)
: target_(b.get())
{
}
return_type get()
{
return target_.get();
}
private:
async_result(const async_result&) ASIO_DELETED;
async_result& operator=(const async_result&) ASIO_DELETED;
async_result<T, Signature> target_;
};
template <typename T, typename Executor, typename Allocator>
struct associated_allocator<executor_binder<T, Executor>, Allocator>
{
typedef typename associated_allocator<T, Allocator>::type type;
static type get(const executor_binder<T, Executor>& b,
const Allocator& a = Allocator()) ASIO_NOEXCEPT
{
return associated_allocator<T, Allocator>::get(b.get(), a);
}
};
template <typename T, typename Executor, typename Executor1>
struct associated_executor<executor_binder<T, Executor>, Executor1>
{
typedef Executor type;
static type get(const executor_binder<T, Executor>& b,
const Executor1& = Executor1()) ASIO_NOEXCEPT
{
return b.get_executor();
}
};
#endif // !defined(GENERATING_DOCUMENTATION)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BIND_EXECUTOR_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,253 +0,0 @@
//
// buffered_read_stream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_READ_STREAM_HPP
#define ASIO_BUFFERED_READ_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/async_result.hpp"
#include "asio/buffered_read_stream_fwd.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/buffer_resize_guard.hpp"
#include "asio/detail/buffered_stream_storage.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Adds buffering to the read-related operations of a stream.
/**
* The buffered_read_stream class template can be used to add buffering to the
* synchronous and asynchronous read operations of a stream.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Stream>
class buffered_read_stream
: private noncopyable
{
public:
/// The type of the next layer.
typedef typename remove_reference<Stream>::type next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
/// The type of the executor associated with the object.
typedef typename lowest_layer_type::executor_type executor_type;
#if defined(GENERATING_DOCUMENTATION)
/// The default buffer size.
static const std::size_t default_buffer_size = implementation_defined;
#else
ASIO_STATIC_CONSTANT(std::size_t, default_buffer_size = 1024);
#endif
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_read_stream(Arg& a)
: next_layer_(a),
storage_(default_buffer_size)
{
}
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
buffered_read_stream(Arg& a, std::size_t buffer_size)
: next_layer_(a),
storage_(buffer_size)
{
}
/// Get a reference to the next layer.
next_layer_type& next_layer()
{
return next_layer_;
}
/// Get a reference to the lowest layer.
lowest_layer_type& lowest_layer()
{
return next_layer_.lowest_layer();
}
/// Get a const reference to the lowest layer.
const lowest_layer_type& lowest_layer() const
{
return next_layer_.lowest_layer();
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return next_layer_.lowest_layer().get_executor();
}
/// Close the stream.
void close()
{
next_layer_.close();
}
/// Close the stream.
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
next_layer_.close(ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Write the given data to the stream. Returns the number of bytes written.
/// Throws an exception on failure.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
return next_layer_.write_some(buffers);
}
/// Write the given data to the stream. Returns the number of bytes written,
/// or 0 if an error occurred.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec)
{
return next_layer_.write_some(buffers, ec);
}
/// Start an asynchronous write. The data being written must be valid for the
/// lifetime of the asynchronous operation.
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_write_some(const ConstBufferSequence& buffers,
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return next_layer_.async_write_some(buffers,
ASIO_MOVE_CAST(WriteHandler)(handler));
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation. Throws an exception on failure.
std::size_t fill();
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation, or 0 if an error occurred.
std::size_t fill(asio::error_code& ec);
/// Start an asynchronous fill.
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_fill(
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type));
/// Read some data from the stream. Returns the number of bytes read. Throws
/// an exception on failure.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers);
/// Read some data from the stream. Returns the number of bytes read or 0 if
/// an error occurred.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec);
/// Start an asynchronous read. The buffer into which the data will be read
/// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_read_some(const MutableBufferSequence& buffers,
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type));
/// Peek at the incoming data on the stream. Returns the number of bytes read.
/// Throws an exception on failure.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers);
/// Peek at the incoming data on the stream. Returns the number of bytes read,
/// or 0 if an error occurred.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers,
asio::error_code& ec);
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail()
{
return storage_.size();
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail(asio::error_code& ec)
{
ec = asio::error_code();
return storage_.size();
}
private:
/// Copy data out of the internal buffer to the specified target buffer.
/// Returns the number of bytes copied.
template <typename MutableBufferSequence>
std::size_t copy(const MutableBufferSequence& buffers)
{
std::size_t bytes_copied = asio::buffer_copy(
buffers, storage_.data(), storage_.size());
storage_.consume(bytes_copied);
return bytes_copied;
}
/// Copy data from the internal buffer to the specified target buffer, without
/// removing the data from the internal buffer. Returns the number of bytes
/// copied.
template <typename MutableBufferSequence>
std::size_t peek_copy(const MutableBufferSequence& buffers)
{
return asio::buffer_copy(buffers, storage_.data(), storage_.size());
}
/// The next layer.
Stream next_layer_;
// The data in the buffer.
detail::buffered_stream_storage storage_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/buffered_read_stream.hpp"
#endif // ASIO_BUFFERED_READ_STREAM_HPP

View File

@ -1,25 +0,0 @@
//
// buffered_read_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_READ_STREAM_FWD_HPP
#define ASIO_BUFFERED_READ_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
namespace asio {
template <typename Stream>
class buffered_read_stream;
} // namespace asio
#endif // ASIO_BUFFERED_READ_STREAM_FWD_HPP

View File

@ -1,279 +0,0 @@
//
// buffered_stream.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_STREAM_HPP
#define ASIO_BUFFERED_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/async_result.hpp"
#include "asio/buffered_read_stream.hpp"
#include "asio/buffered_write_stream.hpp"
#include "asio/buffered_stream_fwd.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Adds buffering to the read- and write-related operations of a stream.
/**
* The buffered_stream class template can be used to add buffering to the
* synchronous and asynchronous read and write operations of a stream.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Stream>
class buffered_stream
: private noncopyable
{
public:
/// The type of the next layer.
typedef typename remove_reference<Stream>::type next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
/// The type of the executor associated with the object.
typedef typename lowest_layer_type::executor_type executor_type;
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_stream(Arg& a)
: inner_stream_impl_(a),
stream_impl_(inner_stream_impl_)
{
}
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_stream(Arg& a, std::size_t read_buffer_size,
std::size_t write_buffer_size)
: inner_stream_impl_(a, write_buffer_size),
stream_impl_(inner_stream_impl_, read_buffer_size)
{
}
/// Get a reference to the next layer.
next_layer_type& next_layer()
{
return stream_impl_.next_layer().next_layer();
}
/// Get a reference to the lowest layer.
lowest_layer_type& lowest_layer()
{
return stream_impl_.lowest_layer();
}
/// Get a const reference to the lowest layer.
const lowest_layer_type& lowest_layer() const
{
return stream_impl_.lowest_layer();
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return stream_impl_.lowest_layer().get_executor();
}
/// Close the stream.
void close()
{
stream_impl_.close();
}
/// Close the stream.
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
stream_impl_.close(ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation. Throws an
/// exception on failure.
std::size_t flush()
{
return stream_impl_.next_layer().flush();
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation, or 0 if an
/// error occurred.
std::size_t flush(asio::error_code& ec)
{
return stream_impl_.next_layer().flush(ec);
}
/// Start an asynchronous flush.
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_flush(
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return stream_impl_.next_layer().async_flush(
ASIO_MOVE_CAST(WriteHandler)(handler));
}
/// Write the given data to the stream. Returns the number of bytes written.
/// Throws an exception on failure.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers)
{
return stream_impl_.write_some(buffers);
}
/// Write the given data to the stream. Returns the number of bytes written,
/// or 0 if an error occurred.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec)
{
return stream_impl_.write_some(buffers, ec);
}
/// Start an asynchronous write. The data being written must be valid for the
/// lifetime of the asynchronous operation.
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_write_some(const ConstBufferSequence& buffers,
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return stream_impl_.async_write_some(buffers,
ASIO_MOVE_CAST(WriteHandler)(handler));
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation. Throws an exception on failure.
std::size_t fill()
{
return stream_impl_.fill();
}
/// Fill the buffer with some data. Returns the number of bytes placed in the
/// buffer as a result of the operation, or 0 if an error occurred.
std::size_t fill(asio::error_code& ec)
{
return stream_impl_.fill(ec);
}
/// Start an asynchronous fill.
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_fill(
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return stream_impl_.async_fill(ASIO_MOVE_CAST(ReadHandler)(handler));
}
/// Read some data from the stream. Returns the number of bytes read. Throws
/// an exception on failure.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
return stream_impl_.read_some(buffers);
}
/// Read some data from the stream. Returns the number of bytes read or 0 if
/// an error occurred.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return stream_impl_.read_some(buffers, ec);
}
/// Start an asynchronous read. The buffer into which the data will be read
/// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_read_some(const MutableBufferSequence& buffers,
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return stream_impl_.async_read_some(buffers,
ASIO_MOVE_CAST(ReadHandler)(handler));
}
/// Peek at the incoming data on the stream. Returns the number of bytes read.
/// Throws an exception on failure.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers)
{
return stream_impl_.peek(buffers);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read,
/// or 0 if an error occurred.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return stream_impl_.peek(buffers, ec);
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail()
{
return stream_impl_.in_avail();
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail(asio::error_code& ec)
{
return stream_impl_.in_avail(ec);
}
private:
// The buffered write stream.
typedef buffered_write_stream<Stream> write_stream_type;
write_stream_type inner_stream_impl_;
// The buffered read stream.
typedef buffered_read_stream<write_stream_type&> read_stream_type;
read_stream_type stream_impl_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BUFFERED_STREAM_HPP

View File

@ -1,25 +0,0 @@
//
// buffered_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_STREAM_FWD_HPP
#define ASIO_BUFFERED_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
namespace asio {
template <typename Stream>
class buffered_stream;
} // namespace asio
#endif // ASIO_BUFFERED_STREAM_FWD_HPP

View File

@ -1,245 +0,0 @@
//
// buffered_write_stream.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_WRITE_STREAM_HPP
#define ASIO_BUFFERED_WRITE_STREAM_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/buffered_write_stream_fwd.hpp"
#include "asio/buffer.hpp"
#include "asio/completion_condition.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/buffered_stream_storage.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/error.hpp"
#include "asio/write.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Adds buffering to the write-related operations of a stream.
/**
* The buffered_write_stream class template can be used to add buffering to the
* synchronous and asynchronous write operations of a stream.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*
* @par Concepts:
* AsyncReadStream, AsyncWriteStream, Stream, SyncReadStream, SyncWriteStream.
*/
template <typename Stream>
class buffered_write_stream
: private noncopyable
{
public:
/// The type of the next layer.
typedef typename remove_reference<Stream>::type next_layer_type;
/// The type of the lowest layer.
typedef typename next_layer_type::lowest_layer_type lowest_layer_type;
/// The type of the executor associated with the object.
typedef typename lowest_layer_type::executor_type executor_type;
#if defined(GENERATING_DOCUMENTATION)
/// The default buffer size.
static const std::size_t default_buffer_size = implementation_defined;
#else
ASIO_STATIC_CONSTANT(std::size_t, default_buffer_size = 1024);
#endif
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
explicit buffered_write_stream(Arg& a)
: next_layer_(a),
storage_(default_buffer_size)
{
}
/// Construct, passing the specified argument to initialise the next layer.
template <typename Arg>
buffered_write_stream(Arg& a, std::size_t buffer_size)
: next_layer_(a),
storage_(buffer_size)
{
}
/// Get a reference to the next layer.
next_layer_type& next_layer()
{
return next_layer_;
}
/// Get a reference to the lowest layer.
lowest_layer_type& lowest_layer()
{
return next_layer_.lowest_layer();
}
/// Get a const reference to the lowest layer.
const lowest_layer_type& lowest_layer() const
{
return next_layer_.lowest_layer();
}
/// Get the executor associated with the object.
executor_type get_executor() ASIO_NOEXCEPT
{
return next_layer_.lowest_layer().get_executor();
}
/// Close the stream.
void close()
{
next_layer_.close();
}
/// Close the stream.
ASIO_SYNC_OP_VOID close(asio::error_code& ec)
{
next_layer_.close(ec);
ASIO_SYNC_OP_VOID_RETURN(ec);
}
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation. Throws an
/// exception on failure.
std::size_t flush();
/// Flush all data from the buffer to the next layer. Returns the number of
/// bytes written to the next layer on the last write operation, or 0 if an
/// error occurred.
std::size_t flush(asio::error_code& ec);
/// Start an asynchronous flush.
template <
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_flush(
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type));
/// Write the given data to the stream. Returns the number of bytes written.
/// Throws an exception on failure.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers);
/// Write the given data to the stream. Returns the number of bytes written,
/// or 0 if an error occurred and the error handler did not throw.
template <typename ConstBufferSequence>
std::size_t write_some(const ConstBufferSequence& buffers,
asio::error_code& ec);
/// Start an asynchronous write. The data being written must be valid for the
/// lifetime of the asynchronous operation.
template <typename ConstBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) WriteHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(WriteHandler,
void (asio::error_code, std::size_t))
async_write_some(const ConstBufferSequence& buffers,
ASIO_MOVE_ARG(WriteHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type));
/// Read some data from the stream. Returns the number of bytes read. Throws
/// an exception on failure.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers)
{
return next_layer_.read_some(buffers);
}
/// Read some data from the stream. Returns the number of bytes read or 0 if
/// an error occurred.
template <typename MutableBufferSequence>
std::size_t read_some(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return next_layer_.read_some(buffers, ec);
}
/// Start an asynchronous read. The buffer into which the data will be read
/// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence,
ASIO_COMPLETION_TOKEN_FOR(void (asio::error_code,
std::size_t)) ReadHandler
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(ReadHandler,
void (asio::error_code, std::size_t))
async_read_some(const MutableBufferSequence& buffers,
ASIO_MOVE_ARG(ReadHandler) handler
ASIO_DEFAULT_COMPLETION_TOKEN(executor_type))
{
return next_layer_.async_read_some(buffers,
ASIO_MOVE_CAST(ReadHandler)(handler));
}
/// Peek at the incoming data on the stream. Returns the number of bytes read.
/// Throws an exception on failure.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers)
{
return next_layer_.peek(buffers);
}
/// Peek at the incoming data on the stream. Returns the number of bytes read,
/// or 0 if an error occurred.
template <typename MutableBufferSequence>
std::size_t peek(const MutableBufferSequence& buffers,
asio::error_code& ec)
{
return next_layer_.peek(buffers, ec);
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail()
{
return next_layer_.in_avail();
}
/// Determine the amount of data that may be read without blocking.
std::size_t in_avail(asio::error_code& ec)
{
return next_layer_.in_avail(ec);
}
private:
/// Copy data into the internal buffer from the specified source buffer.
/// Returns the number of bytes copied.
template <typename ConstBufferSequence>
std::size_t copy(const ConstBufferSequence& buffers);
/// The next layer.
Stream next_layer_;
// The data in the buffer.
detail::buffered_stream_storage storage_;
};
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/buffered_write_stream.hpp"
#endif // ASIO_BUFFERED_WRITE_STREAM_HPP

View File

@ -1,25 +0,0 @@
//
// buffered_write_stream_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERED_WRITE_STREAM_FWD_HPP
#define ASIO_BUFFERED_WRITE_STREAM_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
namespace asio {
template <typename Stream>
class buffered_write_stream;
} // namespace asio
#endif // ASIO_BUFFERED_WRITE_STREAM_FWD_HPP

View File

@ -1,521 +0,0 @@
//
// buffers_iterator.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_BUFFERS_ITERATOR_HPP
#define ASIO_BUFFERS_ITERATOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include <iterator>
#include "asio/buffer.hpp"
#include "asio/detail/assert.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail
{
template <bool IsMutable>
struct buffers_iterator_types_helper;
template <>
struct buffers_iterator_types_helper<false>
{
typedef const_buffer buffer_type;
template <typename ByteType>
struct byte_type
{
typedef typename add_const<ByteType>::type type;
};
};
template <>
struct buffers_iterator_types_helper<true>
{
typedef mutable_buffer buffer_type;
template <typename ByteType>
struct byte_type
{
typedef ByteType type;
};
};
template <typename BufferSequence, typename ByteType>
struct buffers_iterator_types
{
enum
{
is_mutable = is_convertible<
typename BufferSequence::value_type,
mutable_buffer>::value
};
typedef buffers_iterator_types_helper<is_mutable> helper;
typedef typename helper::buffer_type buffer_type;
typedef typename helper::template byte_type<ByteType>::type byte_type;
typedef typename BufferSequence::const_iterator const_iterator;
};
template <typename ByteType>
struct buffers_iterator_types<mutable_buffer, ByteType>
{
typedef mutable_buffer buffer_type;
typedef ByteType byte_type;
typedef const mutable_buffer* const_iterator;
};
template <typename ByteType>
struct buffers_iterator_types<const_buffer, ByteType>
{
typedef const_buffer buffer_type;
typedef typename add_const<ByteType>::type byte_type;
typedef const const_buffer* const_iterator;
};
#if !defined(ASIO_NO_DEPRECATED)
template <typename ByteType>
struct buffers_iterator_types<mutable_buffers_1, ByteType>
{
typedef mutable_buffer buffer_type;
typedef ByteType byte_type;
typedef const mutable_buffer* const_iterator;
};
template <typename ByteType>
struct buffers_iterator_types<const_buffers_1, ByteType>
{
typedef const_buffer buffer_type;
typedef typename add_const<ByteType>::type byte_type;
typedef const const_buffer* const_iterator;
};
#endif // !defined(ASIO_NO_DEPRECATED)
}
/// A random access iterator over the bytes in a buffer sequence.
template <typename BufferSequence, typename ByteType = char>
class buffers_iterator
{
private:
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::buffer_type buffer_type;
typedef typename detail::buffers_iterator_types<BufferSequence,
ByteType>::const_iterator buffer_sequence_iterator_type;
public:
/// The type used for the distance between two iterators.
typedef std::ptrdiff_t difference_type;
/// The type of the value pointed to by the iterator.
typedef ByteType value_type;
#if defined(GENERATING_DOCUMENTATION)
/// The type of the result of applying operator->() to the iterator.
/**
* If the buffer sequence stores buffer objects that are convertible to
* mutable_buffer, this is a pointer to a non-const ByteType. Otherwise, a
* pointer to a const ByteType.
*/
typedef const_or_non_const_ByteType* pointer;
#else // defined(GENERATING_DOCUMENTATION)
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::byte_type* pointer;
#endif // defined(GENERATING_DOCUMENTATION)
#if defined(GENERATING_DOCUMENTATION)
/// The type of the result of applying operator*() to the iterator.
/**
* If the buffer sequence stores buffer objects that are convertible to
* mutable_buffer, this is a reference to a non-const ByteType. Otherwise, a
* reference to a const ByteType.
*/
typedef const_or_non_const_ByteType& reference;
#else // defined(GENERATING_DOCUMENTATION)
typedef typename detail::buffers_iterator_types<
BufferSequence, ByteType>::byte_type& reference;
#endif // defined(GENERATING_DOCUMENTATION)
/// The iterator category.
typedef std::random_access_iterator_tag iterator_category;
/// Default constructor. Creates an iterator in an undefined state.
buffers_iterator()
: current_buffer_(),
current_buffer_position_(0),
begin_(),
current_(),
end_(),
position_(0)
{
}
/// Construct an iterator representing the beginning of the buffers' data.
static buffers_iterator begin(const BufferSequence& buffers)
#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
__attribute__ ((__noinline__))
#endif // defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
{
buffers_iterator new_iter;
new_iter.begin_ = asio::buffer_sequence_begin(buffers);
new_iter.current_ = asio::buffer_sequence_begin(buffers);
new_iter.end_ = asio::buffer_sequence_end(buffers);
while (new_iter.current_ != new_iter.end_)
{
new_iter.current_buffer_ = *new_iter.current_;
if (new_iter.current_buffer_.size() > 0)
break;
++new_iter.current_;
}
return new_iter;
}
/// Construct an iterator representing the end of the buffers' data.
static buffers_iterator end(const BufferSequence& buffers)
#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
__attribute__ ((__noinline__))
#endif // defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ == 3)
{
buffers_iterator new_iter;
new_iter.begin_ = asio::buffer_sequence_begin(buffers);
new_iter.current_ = asio::buffer_sequence_begin(buffers);
new_iter.end_ = asio::buffer_sequence_end(buffers);
while (new_iter.current_ != new_iter.end_)
{
buffer_type buffer = *new_iter.current_;
new_iter.position_ += buffer.size();
++new_iter.current_;
}
return new_iter;
}
/// Dereference an iterator.
reference operator*() const
{
return dereference();
}
/// Dereference an iterator.
pointer operator->() const
{
return &dereference();
}
/// Access an individual element.
reference operator[](std::ptrdiff_t difference) const
{
buffers_iterator tmp(*this);
tmp.advance(difference);
return *tmp;
}
/// Increment operator (prefix).
buffers_iterator& operator++()
{
increment();
return *this;
}
/// Increment operator (postfix).
buffers_iterator operator++(int)
{
buffers_iterator tmp(*this);
++*this;
return tmp;
}
/// Decrement operator (prefix).
buffers_iterator& operator--()
{
decrement();
return *this;
}
/// Decrement operator (postfix).
buffers_iterator operator--(int)
{
buffers_iterator tmp(*this);
--*this;
return tmp;
}
/// Addition operator.
buffers_iterator& operator+=(std::ptrdiff_t difference)
{
advance(difference);
return *this;
}
/// Subtraction operator.
buffers_iterator& operator-=(std::ptrdiff_t difference)
{
advance(-difference);
return *this;
}
/// Addition operator.
friend buffers_iterator operator+(const buffers_iterator& iter,
std::ptrdiff_t difference)
{
buffers_iterator tmp(iter);
tmp.advance(difference);
return tmp;
}
/// Addition operator.
friend buffers_iterator operator+(std::ptrdiff_t difference,
const buffers_iterator& iter)
{
buffers_iterator tmp(iter);
tmp.advance(difference);
return tmp;
}
/// Subtraction operator.
friend buffers_iterator operator-(const buffers_iterator& iter,
std::ptrdiff_t difference)
{
buffers_iterator tmp(iter);
tmp.advance(-difference);
return tmp;
}
/// Subtraction operator.
friend std::ptrdiff_t operator-(const buffers_iterator& a,
const buffers_iterator& b)
{
return b.distance_to(a);
}
/// Test two iterators for equality.
friend bool operator==(const buffers_iterator& a, const buffers_iterator& b)
{
return a.equal(b);
}
/// Test two iterators for inequality.
friend bool operator!=(const buffers_iterator& a, const buffers_iterator& b)
{
return !a.equal(b);
}
/// Compare two iterators.
friend bool operator<(const buffers_iterator& a, const buffers_iterator& b)
{
return a.distance_to(b) > 0;
}
/// Compare two iterators.
friend bool operator<=(const buffers_iterator& a, const buffers_iterator& b)
{
return !(b < a);
}
/// Compare two iterators.
friend bool operator>(const buffers_iterator& a, const buffers_iterator& b)
{
return b < a;
}
/// Compare two iterators.
friend bool operator>=(const buffers_iterator& a, const buffers_iterator& b)
{
return !(a < b);
}
private:
// Dereference the iterator.
reference dereference() const
{
return static_cast<pointer>(
current_buffer_.data())[current_buffer_position_];
}
// Compare two iterators for equality.
bool equal(const buffers_iterator& other) const
{
return position_ == other.position_;
}
// Increment the iterator.
void increment()
{
ASIO_ASSERT(current_ != end_ && "iterator out of bounds");
++position_;
// Check if the increment can be satisfied by the current buffer.
++current_buffer_position_;
if (current_buffer_position_ != current_buffer_.size())
return;
// Find the next non-empty buffer.
++current_;
current_buffer_position_ = 0;
while (current_ != end_)
{
current_buffer_ = *current_;
if (current_buffer_.size() > 0)
return;
++current_;
}
}
// Decrement the iterator.
void decrement()
{
ASIO_ASSERT(position_ > 0 && "iterator out of bounds");
--position_;
// Check if the decrement can be satisfied by the current buffer.
if (current_buffer_position_ != 0)
{
--current_buffer_position_;
return;
}
// Find the previous non-empty buffer.
buffer_sequence_iterator_type iter = current_;
while (iter != begin_)
{
--iter;
buffer_type buffer = *iter;
std::size_t buffer_size = buffer.size();
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size - 1;
return;
}
}
}
// Advance the iterator by the specified distance.
void advance(std::ptrdiff_t n)
{
if (n > 0)
{
ASIO_ASSERT(current_ != end_ && "iterator out of bounds");
for (;;)
{
std::ptrdiff_t current_buffer_balance
= current_buffer_.size() - current_buffer_position_;
// Check if the advance can be satisfied by the current buffer.
if (current_buffer_balance > n)
{
position_ += n;
current_buffer_position_ += n;
return;
}
// Update position.
n -= current_buffer_balance;
position_ += current_buffer_balance;
// Move to next buffer. If it is empty then it will be skipped on the
// next iteration of this loop.
if (++current_ == end_)
{
ASIO_ASSERT(n == 0 && "iterator out of bounds");
current_buffer_ = buffer_type();
current_buffer_position_ = 0;
return;
}
current_buffer_ = *current_;
current_buffer_position_ = 0;
}
}
else if (n < 0)
{
std::size_t abs_n = -n;
ASIO_ASSERT(position_ >= abs_n && "iterator out of bounds");
for (;;)
{
// Check if the advance can be satisfied by the current buffer.
if (current_buffer_position_ >= abs_n)
{
position_ -= abs_n;
current_buffer_position_ -= abs_n;
return;
}
// Update position.
abs_n -= current_buffer_position_;
position_ -= current_buffer_position_;
// Check if we've reached the beginning of the buffers.
if (current_ == begin_)
{
ASIO_ASSERT(abs_n == 0 && "iterator out of bounds");
current_buffer_position_ = 0;
return;
}
// Find the previous non-empty buffer.
buffer_sequence_iterator_type iter = current_;
while (iter != begin_)
{
--iter;
buffer_type buffer = *iter;
std::size_t buffer_size = buffer.size();
if (buffer_size > 0)
{
current_ = iter;
current_buffer_ = buffer;
current_buffer_position_ = buffer_size;
break;
}
}
}
}
}
// Determine the distance between two iterators.
std::ptrdiff_t distance_to(const buffers_iterator& other) const
{
return other.position_ - position_;
}
buffer_type current_buffer_;
std::size_t current_buffer_position_;
buffer_sequence_iterator_type begin_;
buffer_sequence_iterator_type current_;
buffer_sequence_iterator_type end_;
std::size_t position_;
};
/// Construct an iterator representing the beginning of the buffers' data.
template <typename BufferSequence>
inline buffers_iterator<BufferSequence> buffers_begin(
const BufferSequence& buffers)
{
return buffers_iterator<BufferSequence>::begin(buffers);
}
/// Construct an iterator representing the end of the buffers' data.
template <typename BufferSequence>
inline buffers_iterator<BufferSequence> buffers_end(
const BufferSequence& buffers)
{
return buffers_iterator<BufferSequence>::end(buffers);
}
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_BUFFERS_ITERATOR_HPP

View File

@ -1,471 +0,0 @@
//
// co_spawn.hpp
// ~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_CO_SPAWN_HPP
#define ASIO_CO_SPAWN_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_CO_AWAIT) || defined(GENERATING_DOCUMENTATION)
#include "asio/awaitable.hpp"
#include "asio/execution/executor.hpp"
#include "asio/execution_context.hpp"
#include "asio/is_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename T>
struct awaitable_signature;
template <typename T, typename Executor>
struct awaitable_signature<awaitable<T, Executor>>
{
typedef void type(std::exception_ptr, T);
};
template <typename Executor>
struct awaitable_signature<awaitable<void, Executor>>
{
typedef void type(std::exception_ptr);
};
} // namespace detail
/// Spawn a new coroutined-based thread of execution.
/**
* @param ex The executor that will be used to schedule the new thread of
* execution.
*
* @param a The asio::awaitable object that is the result of calling the
* coroutine's entry point function.
*
* @param token The completion token that will handle the notification that
* the thread of execution has completed. The function signature of the
* completion handler must be:
* @code void handler(std::exception_ptr, T); @endcode
*
* @par Example
* @code
* asio::awaitable<std::size_t> echo(tcp::socket socket)
* {
* std::size_t bytes_transferred = 0;
*
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
*
* bytes_transferred += n;
* }
* }
* catch (const std::exception&)
* {
* }
*
* co_return bytes_transferred;
* }
*
* // ...
*
* asio::co_spawn(my_executor,
* echo(std::move(my_tcp_socket)),
* [](std::exception_ptr e, std::size_t n)
* {
* std::cout << "transferred " << n << "\n";
* });
* @endcode
*/
template <typename Executor, typename T, typename AwaitableExecutor,
ASIO_COMPLETION_TOKEN_FOR(
void(std::exception_ptr, T)) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(Executor)>
inline ASIO_INITFN_AUTO_RESULT_TYPE(
CompletionToken, void(std::exception_ptr, T))
co_spawn(const Executor& ex, awaitable<T, AwaitableExecutor> a,
CompletionToken&& token
ASIO_DEFAULT_COMPLETION_TOKEN(Executor),
typename constraint<
(is_executor<Executor>::value || execution::is_executor<Executor>::value)
&& is_convertible<Executor, AwaitableExecutor>::value
>::type = 0);
/// Spawn a new coroutined-based thread of execution.
/**
* @param ex The executor that will be used to schedule the new thread of
* execution.
*
* @param a The asio::awaitable object that is the result of calling the
* coroutine's entry point function.
*
* @param token The completion token that will handle the notification that
* the thread of execution has completed. The function signature of the
* completion handler must be:
* @code void handler(std::exception_ptr); @endcode
*
* @par Example
* @code
* asio::awaitable<void> echo(tcp::socket socket)
* {
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
* }
* }
* catch (const std::exception& e)
* {
* std::cerr << "Exception: " << e.what() << "\n";
* }
* }
*
* // ...
*
* asio::co_spawn(my_executor,
* echo(std::move(my_tcp_socket)),
* asio::detached);
* @endcode
*/
template <typename Executor, typename AwaitableExecutor,
ASIO_COMPLETION_TOKEN_FOR(
void(std::exception_ptr)) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(Executor)>
inline ASIO_INITFN_AUTO_RESULT_TYPE(
CompletionToken, void(std::exception_ptr))
co_spawn(const Executor& ex, awaitable<void, AwaitableExecutor> a,
CompletionToken&& token
ASIO_DEFAULT_COMPLETION_TOKEN(Executor),
typename constraint<
(is_executor<Executor>::value || execution::is_executor<Executor>::value)
&& is_convertible<Executor, AwaitableExecutor>::value
>::type = 0);
/// Spawn a new coroutined-based thread of execution.
/**
* @param ctx An execution context that will provide the executor to be used to
* schedule the new thread of execution.
*
* @param a The asio::awaitable object that is the result of calling the
* coroutine's entry point function.
*
* @param token The completion token that will handle the notification that
* the thread of execution has completed. The function signature of the
* completion handler must be:
* @code void handler(std::exception_ptr); @endcode
*
* @par Example
* @code
* asio::awaitable<std::size_t> echo(tcp::socket socket)
* {
* std::size_t bytes_transferred = 0;
*
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
*
* bytes_transferred += n;
* }
* }
* catch (const std::exception&)
* {
* }
*
* co_return bytes_transferred;
* }
*
* // ...
*
* asio::co_spawn(my_io_context,
* echo(std::move(my_tcp_socket)),
* [](std::exception_ptr e, std::size_t n)
* {
* std::cout << "transferred " << n << "\n";
* });
* @endcode
*/
template <typename ExecutionContext, typename T, typename AwaitableExecutor,
ASIO_COMPLETION_TOKEN_FOR(
void(std::exception_ptr, T)) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(
typename ExecutionContext::executor_type)>
inline ASIO_INITFN_AUTO_RESULT_TYPE(
CompletionToken, void(std::exception_ptr, T))
co_spawn(ExecutionContext& ctx, awaitable<T, AwaitableExecutor> a,
CompletionToken&& token
ASIO_DEFAULT_COMPLETION_TOKEN(
typename ExecutionContext::executor_type),
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
&& is_convertible<typename ExecutionContext::executor_type,
AwaitableExecutor>::value
>::type = 0);
/// Spawn a new coroutined-based thread of execution.
/**
* @param ctx An execution context that will provide the executor to be used to
* schedule the new thread of execution.
*
* @param a The asio::awaitable object that is the result of calling the
* coroutine's entry point function.
*
* @param token The completion token that will handle the notification that
* the thread of execution has completed. The function signature of the
* completion handler must be:
* @code void handler(std::exception_ptr); @endcode
*
* @par Example
* @code
* asio::awaitable<void> echo(tcp::socket socket)
* {
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
* }
* }
* catch (const std::exception& e)
* {
* std::cerr << "Exception: " << e.what() << "\n";
* }
* }
*
* // ...
*
* asio::co_spawn(my_io_context,
* echo(std::move(my_tcp_socket)),
* asio::detached);
* @endcode
*/
template <typename ExecutionContext, typename AwaitableExecutor,
ASIO_COMPLETION_TOKEN_FOR(
void(std::exception_ptr)) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(
typename ExecutionContext::executor_type)>
inline ASIO_INITFN_AUTO_RESULT_TYPE(
CompletionToken, void(std::exception_ptr))
co_spawn(ExecutionContext& ctx, awaitable<void, AwaitableExecutor> a,
CompletionToken&& token
ASIO_DEFAULT_COMPLETION_TOKEN(
typename ExecutionContext::executor_type),
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
&& is_convertible<typename ExecutionContext::executor_type,
AwaitableExecutor>::value
>::type = 0);
/// Spawn a new coroutined-based thread of execution.
/**
* @param ex The executor that will be used to schedule the new thread of
* execution.
*
* @param f A nullary function object with a return type of the form
* @c asio::awaitable<R,E> that will be used as the coroutine's entry
* point.
*
* @param token The completion token that will handle the notification that the
* thread of execution has completed. If @c R is @c void, the function
* signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
*
* @par Example
* @code
* asio::awaitable<std::size_t> echo(tcp::socket socket)
* {
* std::size_t bytes_transferred = 0;
*
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
*
* bytes_transferred += n;
* }
* }
* catch (const std::exception&)
* {
* }
*
* co_return bytes_transferred;
* }
*
* // ...
*
* asio::co_spawn(my_executor,
* [socket = std::move(my_tcp_socket)]() mutable
* -> asio::awaitable<void>
* {
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
* }
* }
* catch (const std::exception& e)
* {
* std::cerr << "Exception: " << e.what() << "\n";
* }
* }, asio::detached);
* @endcode
*/
template <typename Executor, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::awaitable_signature<
typename result_of<F()>::type>::type) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(Executor)>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken,
typename detail::awaitable_signature<typename result_of<F()>::type>::type)
co_spawn(const Executor& ex, F&& f,
CompletionToken&& token
ASIO_DEFAULT_COMPLETION_TOKEN(Executor),
typename constraint<
is_executor<Executor>::value || execution::is_executor<Executor>::value
>::type = 0);
/// Spawn a new coroutined-based thread of execution.
/**
* @param ctx An execution context that will provide the executor to be used to
* schedule the new thread of execution.
*
* @param f A nullary function object with a return type of the form
* @c asio::awaitable<R,E> that will be used as the coroutine's entry
* point.
*
* @param token The completion token that will handle the notification that the
* thread of execution has completed. If @c R is @c void, the function
* signature of the completion handler must be:
*
* @code void handler(std::exception_ptr); @endcode
* Otherwise, the function signature of the completion handler must be:
* @code void handler(std::exception_ptr, R); @endcode
*
*
* @par Example
* @code
* asio::awaitable<std::size_t> echo(tcp::socket socket)
* {
* std::size_t bytes_transferred = 0;
*
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
*
* bytes_transferred += n;
* }
* }
* catch (const std::exception&)
* {
* }
*
* co_return bytes_transferred;
* }
*
* // ...
*
* asio::co_spawn(my_io_context,
* [socket = std::move(my_tcp_socket)]() mutable
* -> asio::awaitable<void>
* {
* try
* {
* char data[1024];
* for (;;)
* {
* std::size_t n = co_await socket.async_read_some(
* asio::buffer(data), asio::use_awaitable);
*
* co_await asio::async_write(socket,
* asio::buffer(data, n), asio::use_awaitable);
* }
* }
* catch (const std::exception& e)
* {
* std::cerr << "Exception: " << e.what() << "\n";
* }
* }, asio::detached);
* @endcode
*/
template <typename ExecutionContext, typename F,
ASIO_COMPLETION_TOKEN_FOR(typename detail::awaitable_signature<
typename result_of<F()>::type>::type) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(
typename ExecutionContext::executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken,
typename detail::awaitable_signature<typename result_of<F()>::type>::type)
co_spawn(ExecutionContext& ctx, F&& f,
CompletionToken&& token
ASIO_DEFAULT_COMPLETION_TOKEN(
typename ExecutionContext::executor_type),
typename constraint<
is_convertible<ExecutionContext&, execution_context&>::value
>::type = 0);
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/co_spawn.hpp"
#endif // defined(ASIO_HAS_CO_AWAIT) || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_CO_SPAWN_HPP

View File

@ -1,218 +0,0 @@
//
// completion_condition.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_COMPLETION_CONDITION_HPP
#define ASIO_COMPLETION_CONDITION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// The default maximum number of bytes to transfer in a single operation.
enum default_max_transfer_size_t { default_max_transfer_size = 65536 };
// Adapt result of old-style completion conditions (which had a bool result
// where true indicated that the operation was complete).
inline std::size_t adapt_completion_condition_result(bool result)
{
return result ? 0 : default_max_transfer_size;
}
// Adapt result of current completion conditions (which have a size_t result
// where 0 means the operation is complete, and otherwise the result is the
// maximum number of bytes to transfer on the next underlying operation).
inline std::size_t adapt_completion_condition_result(std::size_t result)
{
return result;
}
class transfer_all_t
{
public:
typedef std::size_t result_type;
template <typename Error>
std::size_t operator()(const Error& err, std::size_t)
{
return !!err ? 0 : default_max_transfer_size;
}
};
class transfer_at_least_t
{
public:
typedef std::size_t result_type;
explicit transfer_at_least_t(std::size_t minimum)
: minimum_(minimum)
{
}
template <typename Error>
std::size_t operator()(const Error& err, std::size_t bytes_transferred)
{
return (!!err || bytes_transferred >= minimum_)
? 0 : default_max_transfer_size;
}
private:
std::size_t minimum_;
};
class transfer_exactly_t
{
public:
typedef std::size_t result_type;
explicit transfer_exactly_t(std::size_t size)
: size_(size)
{
}
template <typename Error>
std::size_t operator()(const Error& err, std::size_t bytes_transferred)
{
return (!!err || bytes_transferred >= size_) ? 0 :
(size_ - bytes_transferred < default_max_transfer_size
? size_ - bytes_transferred : std::size_t(default_max_transfer_size));
}
private:
std::size_t size_;
};
} // namespace detail
/**
* @defgroup completion_condition Completion Condition Function Objects
*
* Function objects used for determining when a read or write operation should
* complete.
*/
/*@{*/
/// Return a completion condition function object that indicates that a read or
/// write operation should continue until all of the data has been transferred,
/// or until an error occurs.
/**
* This function is used to create an object, of unspecified type, that meets
* CompletionCondition requirements.
*
* @par Example
* Reading until a buffer is full:
* @code
* boost::array<char, 128> buf;
* asio::error_code ec;
* std::size_t n = asio::read(
* sock, asio::buffer(buf),
* asio::transfer_all(), ec);
* if (ec)
* {
* // An error occurred.
* }
* else
* {
* // n == 128
* }
* @endcode
*/
#if defined(GENERATING_DOCUMENTATION)
unspecified transfer_all();
#else
inline detail::transfer_all_t transfer_all()
{
return detail::transfer_all_t();
}
#endif
/// Return a completion condition function object that indicates that a read or
/// write operation should continue until a minimum number of bytes has been
/// transferred, or until an error occurs.
/**
* This function is used to create an object, of unspecified type, that meets
* CompletionCondition requirements.
*
* @par Example
* Reading until a buffer is full or contains at least 64 bytes:
* @code
* boost::array<char, 128> buf;
* asio::error_code ec;
* std::size_t n = asio::read(
* sock, asio::buffer(buf),
* asio::transfer_at_least(64), ec);
* if (ec)
* {
* // An error occurred.
* }
* else
* {
* // n >= 64 && n <= 128
* }
* @endcode
*/
#if defined(GENERATING_DOCUMENTATION)
unspecified transfer_at_least(std::size_t minimum);
#else
inline detail::transfer_at_least_t transfer_at_least(std::size_t minimum)
{
return detail::transfer_at_least_t(minimum);
}
#endif
/// Return a completion condition function object that indicates that a read or
/// write operation should continue until an exact number of bytes has been
/// transferred, or until an error occurs.
/**
* This function is used to create an object, of unspecified type, that meets
* CompletionCondition requirements.
*
* @par Example
* Reading until a buffer is full or contains exactly 64 bytes:
* @code
* boost::array<char, 128> buf;
* asio::error_code ec;
* std::size_t n = asio::read(
* sock, asio::buffer(buf),
* asio::transfer_exactly(64), ec);
* if (ec)
* {
* // An error occurred.
* }
* else
* {
* // n == 64
* }
* @endcode
*/
#if defined(GENERATING_DOCUMENTATION)
unspecified transfer_exactly(std::size_t size);
#else
inline detail::transfer_exactly_t transfer_exactly(std::size_t size)
{
return detail::transfer_exactly_t(size);
}
#endif
/*@}*/
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_COMPLETION_CONDITION_HPP

View File

@ -1,136 +0,0 @@
//
// compose.hpp
// ~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_COMPOSE_HPP
#define ASIO_COMPOSE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
#if defined(ASIO_HAS_VARIADIC_TEMPLATES) \
|| defined(GENERATING_DOCUMENTATION)
/// Launch an asynchronous operation with a stateful implementation.
/**
* The async_compose function simplifies the implementation of composed
* asynchronous operations automatically wrapping a stateful function object
* with a conforming intermediate completion handler.
*
* @param implementation A function object that contains the implementation of
* the composed asynchronous operation. The first argument to the function
* object is a non-const reference to the enclosing intermediate completion
* handler. The remaining arguments are any arguments that originate from the
* completion handlers of any asynchronous operations performed by the
* implementation.
* @param token The completion token.
*
* @param io_objects_or_executors Zero or more I/O objects or I/O executors for
* which outstanding work must be maintained.
*
* @par Example:
*
* @code struct async_echo_implementation
* {
* tcp::socket& socket_;
* asio::mutable_buffer buffer_;
* enum { starting, reading, writing } state_;
*
* template <typename Self>
* void operator()(Self& self,
* asio::error_code error = {},
* std::size_t n = 0)
* {
* switch (state_)
* {
* case starting:
* state_ = reading;
* socket_.async_read_some(
* buffer_, std::move(self));
* break;
* case reading:
* if (error)
* {
* self.complete(error, 0);
* }
* else
* {
* state_ = writing;
* asio::async_write(socket_, buffer_,
* asio::transfer_exactly(n),
* std::move(self));
* }
* break;
* case writing:
* self.complete(error, n);
* break;
* }
* }
* };
*
* template <typename CompletionToken>
* auto async_echo(tcp::socket& socket,
* asio::mutable_buffer buffer,
* CompletionToken&& token) ->
* typename asio::async_result<
* typename std::decay<CompletionToken>::type,
* void(asio::error_code, std::size_t)>::return_type
* {
* return asio::async_compose<CompletionToken,
* void(asio::error_code, std::size_t)>(
* async_echo_implementation{socket, buffer,
* async_echo_implementation::starting},
* token, socket);
* } @endcode
*/
template <typename CompletionToken, typename Signature,
typename Implementation, typename... IoObjectsOrExecutors>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken, Signature)
async_compose(ASIO_MOVE_ARG(Implementation) implementation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token,
ASIO_MOVE_ARG(IoObjectsOrExecutors)... io_objects_or_executors);
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
// || defined(GENERATING_DOCUMENTATION)
template <typename CompletionToken, typename Signature, typename Implementation>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken, Signature)
async_compose(ASIO_MOVE_ARG(Implementation) implementation,
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token);
#define ASIO_PRIVATE_ASYNC_COMPOSE_DEF(n) \
template <typename CompletionToken, typename Signature, \
typename Implementation, ASIO_VARIADIC_TPARAMS(n)> \
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken, Signature) \
async_compose(ASIO_MOVE_ARG(Implementation) implementation, \
ASIO_NONDEDUCED_MOVE_ARG(CompletionToken) token, \
ASIO_VARIADIC_MOVE_PARAMS(n));
/**/
ASIO_VARIADIC_GENERATE(ASIO_PRIVATE_ASYNC_COMPOSE_DEF)
#undef ASIO_PRIVATE_ASYNC_COMPOSE_DEF
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
// || defined(GENERATING_DOCUMENTATION)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/compose.hpp"
#endif // ASIO_COMPOSE_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,328 +0,0 @@
//
// coroutine.hpp
// ~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_COROUTINE_HPP
#define ASIO_COROUTINE_HPP
namespace asio {
namespace detail {
class coroutine_ref;
} // namespace detail
/// Provides support for implementing stackless coroutines.
/**
* The @c coroutine class may be used to implement stackless coroutines. The
* class itself is used to store the current state of the coroutine.
*
* Coroutines are copy-constructible and assignable, and the space overhead is
* a single int. They can be used as a base class:
*
* @code class session : coroutine
* {
* ...
* }; @endcode
*
* or as a data member:
*
* @code class session
* {
* ...
* coroutine coro_;
* }; @endcode
*
* or even bound in as a function argument using lambdas or @c bind(). The
* important thing is that as the application maintains a copy of the object
* for as long as the coroutine must be kept alive.
*
* @par Pseudo-keywords
*
* A coroutine is used in conjunction with certain "pseudo-keywords", which
* are implemented as macros. These macros are defined by a header file:
*
* @code #include <asio/yield.hpp>@endcode
*
* and may conversely be undefined as follows:
*
* @code #include <asio/unyield.hpp>@endcode
*
* <b>reenter</b>
*
* The @c reenter macro is used to define the body of a coroutine. It takes a
* single argument: a pointer or reference to a coroutine object. For example,
* if the base class is a coroutine object you may write:
*
* @code reenter (this)
* {
* ... coroutine body ...
* } @endcode
*
* and if a data member or other variable you can write:
*
* @code reenter (coro_)
* {
* ... coroutine body ...
* } @endcode
*
* When @c reenter is executed at runtime, control jumps to the location of the
* last @c yield or @c fork.
*
* The coroutine body may also be a single statement, such as:
*
* @code reenter (this) for (;;)
* {
* ...
* } @endcode
*
* @b Limitation: The @c reenter macro is implemented using a switch. This
* means that you must take care when using local variables within the
* coroutine body. The local variable is not allowed in a position where
* reentering the coroutine could bypass the variable definition.
*
* <b>yield <em>statement</em></b>
*
* This form of the @c yield keyword is often used with asynchronous operations:
*
* @code yield socket_->async_read_some(buffer(*buffer_), *this); @endcode
*
* This divides into four logical steps:
*
* @li @c yield saves the current state of the coroutine.
* @li The statement initiates the asynchronous operation.
* @li The resume point is defined immediately following the statement.
* @li Control is transferred to the end of the coroutine body.
*
* When the asynchronous operation completes, the function object is invoked
* and @c reenter causes control to transfer to the resume point. It is
* important to remember to carry the coroutine state forward with the
* asynchronous operation. In the above snippet, the current class is a
* function object object with a coroutine object as base class or data member.
*
* The statement may also be a compound statement, and this permits us to
* define local variables with limited scope:
*
* @code yield
* {
* mutable_buffers_1 b = buffer(*buffer_);
* socket_->async_read_some(b, *this);
* } @endcode
*
* <b>yield return <em>expression</em> ;</b>
*
* This form of @c yield is often used in generators or coroutine-based parsers.
* For example, the function object:
*
* @code struct interleave : coroutine
* {
* istream& is1;
* istream& is2;
* char operator()(char c)
* {
* reenter (this) for (;;)
* {
* yield return is1.get();
* yield return is2.get();
* }
* }
* }; @endcode
*
* defines a trivial coroutine that interleaves the characters from two input
* streams.
*
* This type of @c yield divides into three logical steps:
*
* @li @c yield saves the current state of the coroutine.
* @li The resume point is defined immediately following the semicolon.
* @li The value of the expression is returned from the function.
*
* <b>yield ;</b>
*
* This form of @c yield is equivalent to the following steps:
*
* @li @c yield saves the current state of the coroutine.
* @li The resume point is defined immediately following the semicolon.
* @li Control is transferred to the end of the coroutine body.
*
* This form might be applied when coroutines are used for cooperative
* threading and scheduling is explicitly managed. For example:
*
* @code struct task : coroutine
* {
* ...
* void operator()()
* {
* reenter (this)
* {
* while (... not finished ...)
* {
* ... do something ...
* yield;
* ... do some more ...
* yield;
* }
* }
* }
* ...
* };
* ...
* task t1, t2;
* for (;;)
* {
* t1();
* t2();
* } @endcode
*
* <b>yield break ;</b>
*
* The final form of @c yield is used to explicitly terminate the coroutine.
* This form is comprised of two steps:
*
* @li @c yield sets the coroutine state to indicate termination.
* @li Control is transferred to the end of the coroutine body.
*
* Once terminated, calls to is_complete() return true and the coroutine cannot
* be reentered.
*
* Note that a coroutine may also be implicitly terminated if the coroutine
* body is exited without a yield, e.g. by return, throw or by running to the
* end of the body.
*
* <b>fork <em>statement</em></b>
*
* The @c fork pseudo-keyword is used when "forking" a coroutine, i.e. splitting
* it into two (or more) copies. One use of @c fork is in a server, where a new
* coroutine is created to handle each client connection:
*
* @code reenter (this)
* {
* do
* {
* socket_.reset(new tcp::socket(my_context_));
* yield acceptor->async_accept(*socket_, *this);
* fork server(*this)();
* } while (is_parent());
* ... client-specific handling follows ...
* } @endcode
*
* The logical steps involved in a @c fork are:
*
* @li @c fork saves the current state of the coroutine.
* @li The statement creates a copy of the coroutine and either executes it
* immediately or schedules it for later execution.
* @li The resume point is defined immediately following the semicolon.
* @li For the "parent", control immediately continues from the next line.
*
* The functions is_parent() and is_child() can be used to differentiate
* between parent and child. You would use these functions to alter subsequent
* control flow.
*
* Note that @c fork doesn't do the actual forking by itself. It is the
* application's responsibility to create a clone of the coroutine and call it.
* The clone can be called immediately, as above, or scheduled for delayed
* execution using something like asio::post().
*
* @par Alternate macro names
*
* If preferred, an application can use macro names that follow a more typical
* naming convention, rather than the pseudo-keywords. These are:
*
* @li @c ASIO_CORO_REENTER instead of @c reenter
* @li @c ASIO_CORO_YIELD instead of @c yield
* @li @c ASIO_CORO_FORK instead of @c fork
*/
class coroutine
{
public:
/// Constructs a coroutine in its initial state.
coroutine() : value_(0) {}
/// Returns true if the coroutine is the child of a fork.
bool is_child() const { return value_ < 0; }
/// Returns true if the coroutine is the parent of a fork.
bool is_parent() const { return !is_child(); }
/// Returns true if the coroutine has reached its terminal state.
bool is_complete() const { return value_ == -1; }
private:
friend class detail::coroutine_ref;
int value_;
};
namespace detail {
class coroutine_ref
{
public:
coroutine_ref(coroutine& c) : value_(c.value_), modified_(false) {}
coroutine_ref(coroutine* c) : value_(c->value_), modified_(false) {}
~coroutine_ref() { if (!modified_) value_ = -1; }
operator int() const { return value_; }
int& operator=(int v) { modified_ = true; return value_ = v; }
private:
void operator=(const coroutine_ref&);
int& value_;
bool modified_;
};
} // namespace detail
} // namespace asio
#define ASIO_CORO_REENTER(c) \
switch (::asio::detail::coroutine_ref _coro_value = c) \
case -1: if (_coro_value) \
{ \
goto terminate_coroutine; \
terminate_coroutine: \
_coro_value = -1; \
goto bail_out_of_coroutine; \
bail_out_of_coroutine: \
break; \
} \
else /* fall-through */ case 0:
#define ASIO_CORO_YIELD_IMPL(n) \
for (_coro_value = (n);;) \
if (_coro_value == 0) \
{ \
case (n): ; \
break; \
} \
else \
switch (_coro_value ? 0 : 1) \
for (;;) \
/* fall-through */ case -1: if (_coro_value) \
goto terminate_coroutine; \
else for (;;) \
/* fall-through */ case 1: if (_coro_value) \
goto bail_out_of_coroutine; \
else /* fall-through */ case 0:
#define ASIO_CORO_FORK_IMPL(n) \
for (_coro_value = -(n);; _coro_value = (n)) \
if (_coro_value == (n)) \
{ \
case -(n): ; \
break; \
} \
else
#if defined(_MSC_VER)
# define ASIO_CORO_YIELD ASIO_CORO_YIELD_IMPL(__COUNTER__ + 1)
# define ASIO_CORO_FORK ASIO_CORO_FORK_IMPL(__COUNTER__ + 1)
#else // defined(_MSC_VER)
# define ASIO_CORO_YIELD ASIO_CORO_YIELD_IMPL(__LINE__)
# define ASIO_CORO_FORK ASIO_CORO_FORK_IMPL(__LINE__)
#endif // defined(_MSC_VER)
#endif // ASIO_COROUTINE_HPP

View File

@ -1,38 +0,0 @@
//
// deadline_timer.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DEADLINE_TIMER_HPP
#define ASIO_DEADLINE_TIMER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_BOOST_DATE_TIME) \
|| defined(GENERATING_DOCUMENTATION)
#include "asio/detail/socket_types.hpp" // Must come before posix_time.
#include "asio/basic_deadline_timer.hpp"
#include <boost/date_time/posix_time/posix_time_types.hpp>
namespace asio {
/// Typedef for the typical usage of timer. Uses a UTC clock.
typedef basic_deadline_timer<boost::posix_time::ptime> deadline_timer;
} // namespace asio
#endif // defined(ASIO_HAS_BOOST_DATE_TIME)
// || defined(GENERATING_DOCUMENTATION)
#endif // ASIO_DEADLINE_TIMER_HPP

View File

@ -1,130 +0,0 @@
//
// defer.hpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DEFER_HPP
#define ASIO_DEFER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/async_result.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/execution_context.hpp"
#include "asio/execution/executor.hpp"
#include "asio/is_executor.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Submits a completion token or function object for execution.
/**
* This function submits an object for execution using the object's associated
* executor. The function object is queued for execution, and is never called
* from the current thread prior to returning from <tt>defer()</tt>.
*
* The use of @c defer(), rather than @ref post(), indicates the caller's
* preference that the executor defer the queueing of the function object. This
* may allow the executor to optimise queueing for cases when the function
* object represents a continuation of the current call context.
*
* This function has the following effects:
*
* @li Constructs a function object handler of type @c Handler, initialized
* with <tt>handler(forward<CompletionToken>(token))</tt>.
*
* @li Constructs an object @c result of type <tt>async_result<Handler></tt>,
* initializing the object as <tt>result(handler)</tt>.
*
* @li Obtains the handler's associated executor object @c ex by performing
* <tt>get_associated_executor(handler)</tt>.
*
* @li Obtains the handler's associated allocator object @c alloc by performing
* <tt>get_associated_allocator(handler)</tt>.
*
* @li Performs <tt>ex.defer(std::move(handler), alloc)</tt>.
*
* @li Returns <tt>result.get()</tt>.
*/
template <ASIO_COMPLETION_TOKEN_FOR(void()) CompletionToken>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken, void()) defer(
ASIO_MOVE_ARG(CompletionToken) token);
/// Submits a completion token or function object for execution.
/**
* This function submits an object for execution using the specified executor.
* The function object is queued for execution, and is never called from the
* current thread prior to returning from <tt>defer()</tt>.
*
* The use of @c defer(), rather than @ref post(), indicates the caller's
* preference that the executor defer the queueing of the function object. This
* may allow the executor to optimise queueing for cases when the function
* object represents a continuation of the current call context.
*
* This function has the following effects:
*
* @li Constructs a function object handler of type @c Handler, initialized
* with <tt>handler(forward<CompletionToken>(token))</tt>.
*
* @li Constructs an object @c result of type <tt>async_result<Handler></tt>,
* initializing the object as <tt>result(handler)</tt>.
*
* @li Obtains the handler's associated executor object @c ex1 by performing
* <tt>get_associated_executor(handler)</tt>.
*
* @li Creates a work object @c w by performing <tt>make_work(ex1)</tt>.
*
* @li Obtains the handler's associated allocator object @c alloc by performing
* <tt>get_associated_allocator(handler)</tt>.
*
* @li Constructs a function object @c f with a function call operator that
* performs <tt>ex1.dispatch(std::move(handler), alloc)</tt> followed by
* <tt>w.reset()</tt>.
*
* @li Performs <tt>Executor(ex).defer(std::move(f), alloc)</tt>.
*
* @li Returns <tt>result.get()</tt>.
*/
template <typename Executor,
ASIO_COMPLETION_TOKEN_FOR(void()) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(Executor)>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken, void()) defer(
const Executor& ex,
ASIO_MOVE_ARG(CompletionToken) token
ASIO_DEFAULT_COMPLETION_TOKEN(Executor),
typename constraint<
execution::is_executor<Executor>::value || is_executor<Executor>::value
>::type = 0);
/// Submits a completion token or function object for execution.
/**
* @returns <tt>defer(ctx.get_executor(), forward<CompletionToken>(token))</tt>.
*/
template <typename ExecutionContext,
ASIO_COMPLETION_TOKEN_FOR(void()) CompletionToken
ASIO_DEFAULT_COMPLETION_TOKEN_TYPE(
typename ExecutionContext::executor_type)>
ASIO_INITFN_AUTO_RESULT_TYPE(CompletionToken, void()) defer(
ExecutionContext& ctx,
ASIO_MOVE_ARG(CompletionToken) token
ASIO_DEFAULT_COMPLETION_TOKEN(
typename ExecutionContext::executor_type),
typename constraint<is_convertible<
ExecutionContext&, execution_context&>::value>::type = 0);
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/defer.hpp"
#endif // ASIO_DEFER_HPP

View File

@ -1,112 +0,0 @@
//
// detached.hpp
// ~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETACHED_HPP
#define ASIO_DETACHED_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <memory>
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
/// Class used to specify that an asynchronous operation is detached.
/**
* The detached_t class is used to indicate that an asynchronous operation is
* detached. That is, there is no completion handler waiting for the
* operation's result. A detached_t object may be passed as a handler to an
* asynchronous operation, typically using the special value
* @c asio::detached. For example:
* @code my_socket.async_send(my_buffer, asio::detached);
* @endcode
*/
class detached_t
{
public:
/// Constructor.
ASIO_CONSTEXPR detached_t()
{
}
/// Adapts an executor to add the @c detached_t completion token as the
/// default.
template <typename InnerExecutor>
struct executor_with_default : InnerExecutor
{
/// Specify @c detached_t as the default completion token type.
typedef detached_t default_completion_token_type;
/// Construct the adapted executor from the inner executor type.
executor_with_default(const InnerExecutor& ex) ASIO_NOEXCEPT
: InnerExecutor(ex)
{
}
/// Convert the specified executor to the inner executor type, then use
/// that to construct the adapted executor.
template <typename OtherExecutor>
executor_with_default(const OtherExecutor& ex,
typename constraint<
is_convertible<OtherExecutor, InnerExecutor>::value
>::type = 0) ASIO_NOEXCEPT
: InnerExecutor(ex)
{
}
};
/// Type alias to adapt an I/O object to use @c detached_t as its
/// default completion token type.
#if defined(ASIO_HAS_ALIAS_TEMPLATES) \
|| defined(GENERATING_DOCUMENTATION)
template <typename T>
using as_default_on_t = typename T::template rebind_executor<
executor_with_default<typename T::executor_type> >::other;
#endif // defined(ASIO_HAS_ALIAS_TEMPLATES)
// || defined(GENERATING_DOCUMENTATION)
/// Function helper to adapt an I/O object to use @c detached_t as its
/// default completion token type.
template <typename T>
static typename decay<T>::type::template rebind_executor<
executor_with_default<typename decay<T>::type::executor_type>
>::other
as_default_on(ASIO_MOVE_ARG(T) object)
{
return typename decay<T>::type::template rebind_executor<
executor_with_default<typename decay<T>::type::executor_type>
>::other(ASIO_MOVE_CAST(T)(object));
}
};
/// A special value, similar to std::nothrow.
/**
* See the documentation for asio::detached_t for a usage example.
*/
#if defined(ASIO_HAS_CONSTEXPR) || defined(GENERATING_DOCUMENTATION)
constexpr detached_t detached;
#elif defined(ASIO_MSVC)
__declspec(selectany) detached_t detached;
#endif
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/impl/detached.hpp"
#endif // ASIO_DETACHED_HPP

View File

@ -1,38 +0,0 @@
//
// detail/array.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_ARRAY_HPP
#define ASIO_DETAIL_ARRAY_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_STD_ARRAY)
# include <array>
#else // defined(ASIO_HAS_STD_ARRAY)
# include <boost/array.hpp>
#endif // defined(ASIO_HAS_STD_ARRAY)
namespace asio {
namespace detail {
#if defined(ASIO_HAS_STD_ARRAY)
using std::array;
#else // defined(ASIO_HAS_STD_ARRAY)
using boost::array;
#endif // defined(ASIO_HAS_STD_ARRAY)
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_ARRAY_HPP

View File

@ -1,34 +0,0 @@
//
// detail/array_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_ARRAY_FWD_HPP
#define ASIO_DETAIL_ARRAY_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
namespace boost {
template<class T, std::size_t N>
class array;
} // namespace boost
// Standard library components can't be forward declared, so we'll have to
// include the array header. Fortunately, it's fairly lightweight and doesn't
// add significantly to the compile time.
#if defined(ASIO_HAS_STD_ARRAY)
# include <array>
#endif // defined(ASIO_HAS_STD_ARRAY)
#endif // ASIO_DETAIL_ARRAY_FWD_HPP

View File

@ -1,32 +0,0 @@
//
// detail/assert.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_ASSERT_HPP
#define ASIO_DETAIL_ASSERT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_BOOST_ASSERT)
# include <boost/assert.hpp>
#else // defined(ASIO_HAS_BOOST_ASSERT)
# include <cassert>
#endif // defined(ASIO_HAS_BOOST_ASSERT)
#if defined(ASIO_HAS_BOOST_ASSERT)
# define ASIO_ASSERT(expr) BOOST_ASSERT(expr)
#else // defined(ASIO_HAS_BOOST_ASSERT)
# define ASIO_ASSERT(expr) assert(expr)
#endif // defined(ASIO_HAS_BOOST_ASSERT)
#endif // ASIO_DETAIL_ASSERT_HPP

View File

@ -1,64 +0,0 @@
//
// detail/atomic_count.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_ATOMIC_COUNT_HPP
#define ASIO_DETAIL_ATOMIC_COUNT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_THREADS)
// Nothing to include.
#elif defined(ASIO_HAS_STD_ATOMIC)
# include <atomic>
#else // defined(ASIO_HAS_STD_ATOMIC)
# include <boost/detail/atomic_count.hpp>
#endif // defined(ASIO_HAS_STD_ATOMIC)
namespace asio {
namespace detail {
#if !defined(ASIO_HAS_THREADS)
typedef long atomic_count;
inline void increment(atomic_count& a, long b) { a += b; }
inline void ref_count_up(atomic_count& a) { ++a; }
inline bool ref_count_down(atomic_count& a) { return --a == 0; }
#elif defined(ASIO_HAS_STD_ATOMIC)
typedef std::atomic<long> atomic_count;
inline void increment(atomic_count& a, long b) { a += b; }
inline void ref_count_up(atomic_count& a)
{
a.fetch_add(1, std::memory_order_relaxed);
}
inline bool ref_count_down(atomic_count& a)
{
if (a.fetch_sub(1, std::memory_order_release) == 1)
{
std::atomic_thread_fence(std::memory_order_acquire);
return true;
}
return false;
}
#else // defined(ASIO_HAS_STD_ATOMIC)
typedef boost::detail::atomic_count atomic_count;
inline void increment(atomic_count& a, long b) { while (b > 0) ++a, --b; }
inline void ref_count_up(atomic_count& a) { ++a; }
inline bool ref_count_down(atomic_count& a) { return --a == 0; }
#endif // defined(ASIO_HAS_STD_ATOMIC)
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_ATOMIC_COUNT_HPP

View File

@ -1,69 +0,0 @@
//
// detail/base_from_completion_cond.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BASE_FROM_COMPLETION_COND_HPP
#define ASIO_DETAIL_BASE_FROM_COMPLETION_COND_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/completion_condition.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename CompletionCondition>
class base_from_completion_cond
{
protected:
explicit base_from_completion_cond(CompletionCondition& completion_condition)
: completion_condition_(
ASIO_MOVE_CAST(CompletionCondition)(completion_condition))
{
}
std::size_t check_for_completion(
const asio::error_code& ec,
std::size_t total_transferred)
{
return detail::adapt_completion_condition_result(
completion_condition_(ec, total_transferred));
}
private:
CompletionCondition completion_condition_;
};
template <>
class base_from_completion_cond<transfer_all_t>
{
protected:
explicit base_from_completion_cond(transfer_all_t)
{
}
static std::size_t check_for_completion(
const asio::error_code& ec,
std::size_t total_transferred)
{
return transfer_all_t()(ec, total_transferred);
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_BASE_FROM_COMPLETION_COND_HPP

View File

@ -1,938 +0,0 @@
//
// detail/bind_handler.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BIND_HANDLER_HPP
#define ASIO_DETAIL_BIND_HANDLER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/associated_allocator.hpp"
#include "asio/associated_executor.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_cont_helpers.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Handler, typename Arg1>
class binder1
{
public:
template <typename T>
binder1(int, ASIO_MOVE_ARG(T) handler, const Arg1& arg1)
: handler_(ASIO_MOVE_CAST(T)(handler)),
arg1_(arg1)
{
}
binder1(Handler& handler, const Arg1& arg1)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(arg1)
{
}
#if defined(ASIO_HAS_MOVE)
binder1(const binder1& other)
: handler_(other.handler_),
arg1_(other.arg1_)
{
}
binder1(binder1&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_))
{
}
#endif // defined(ASIO_HAS_MOVE)
void operator()()
{
handler_(static_cast<const Arg1&>(arg1_));
}
void operator()() const
{
handler_(arg1_);
}
//private:
Handler handler_;
Arg1 arg1_;
};
template <typename Handler, typename Arg1>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
binder1<Handler, Arg1>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
binder1<Handler, Arg1>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1>
inline bool asio_handler_is_continuation(
binder1<Handler, Arg1>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(Function& function,
binder1<Handler, Arg1>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Function, typename Handler, typename Arg1>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(const Function& function,
binder1<Handler, Arg1>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1>
inline binder1<typename decay<Handler>::type, Arg1> bind_handler(
ASIO_MOVE_ARG(Handler) handler, const Arg1& arg1)
{
return binder1<typename decay<Handler>::type, Arg1>(0,
ASIO_MOVE_CAST(Handler)(handler), arg1);
}
template <typename Handler, typename Arg1, typename Arg2>
class binder2
{
public:
template <typename T>
binder2(int, ASIO_MOVE_ARG(T) handler,
const Arg1& arg1, const Arg2& arg2)
: handler_(ASIO_MOVE_CAST(T)(handler)),
arg1_(arg1),
arg2_(arg2)
{
}
binder2(Handler& handler, const Arg1& arg1, const Arg2& arg2)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(arg1),
arg2_(arg2)
{
}
#if defined(ASIO_HAS_MOVE)
binder2(const binder2& other)
: handler_(other.handler_),
arg1_(other.arg1_),
arg2_(other.arg2_)
{
}
binder2(binder2&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_)),
arg2_(ASIO_MOVE_CAST(Arg2)(other.arg2_))
{
}
#endif // defined(ASIO_HAS_MOVE)
void operator()()
{
handler_(static_cast<const Arg1&>(arg1_),
static_cast<const Arg2&>(arg2_));
}
void operator()() const
{
handler_(arg1_, arg2_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
};
template <typename Handler, typename Arg1, typename Arg2>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
binder2<Handler, Arg1, Arg2>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
binder2<Handler, Arg1, Arg2>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2>
inline bool asio_handler_is_continuation(
binder2<Handler, Arg1, Arg2>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1, typename Arg2>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(Function& function,
binder2<Handler, Arg1, Arg2>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Function, typename Handler, typename Arg1, typename Arg2>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(const Function& function,
binder2<Handler, Arg1, Arg2>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2>
inline binder2<typename decay<Handler>::type, Arg1, Arg2> bind_handler(
ASIO_MOVE_ARG(Handler) handler, const Arg1& arg1, const Arg2& arg2)
{
return binder2<typename decay<Handler>::type, Arg1, Arg2>(0,
ASIO_MOVE_CAST(Handler)(handler), arg1, arg2);
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
class binder3
{
public:
template <typename T>
binder3(int, ASIO_MOVE_ARG(T) handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3)
: handler_(ASIO_MOVE_CAST(T)(handler)),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3)
{
}
binder3(Handler& handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3)
{
}
#if defined(ASIO_HAS_MOVE)
binder3(const binder3& other)
: handler_(other.handler_),
arg1_(other.arg1_),
arg2_(other.arg2_),
arg3_(other.arg3_)
{
}
binder3(binder3&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_)),
arg2_(ASIO_MOVE_CAST(Arg2)(other.arg2_)),
arg3_(ASIO_MOVE_CAST(Arg3)(other.arg3_))
{
}
#endif // defined(ASIO_HAS_MOVE)
void operator()()
{
handler_(static_cast<const Arg1&>(arg1_),
static_cast<const Arg2&>(arg2_), static_cast<const Arg3&>(arg3_));
}
void operator()() const
{
handler_(arg1_, arg2_, arg3_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
Arg3 arg3_;
};
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline bool asio_handler_is_continuation(
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler,
typename Arg1, typename Arg2, typename Arg3>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(Function& function,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Function, typename Handler,
typename Arg1, typename Arg2, typename Arg3>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(const Function& function,
binder3<Handler, Arg1, Arg2, Arg3>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2, typename Arg3>
inline binder3<typename decay<Handler>::type, Arg1, Arg2, Arg3> bind_handler(
ASIO_MOVE_ARG(Handler) handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3)
{
return binder3<typename decay<Handler>::type, Arg1, Arg2, Arg3>(0,
ASIO_MOVE_CAST(Handler)(handler), arg1, arg2, arg3);
}
template <typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
class binder4
{
public:
template <typename T>
binder4(int, ASIO_MOVE_ARG(T) handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3, const Arg4& arg4)
: handler_(ASIO_MOVE_CAST(T)(handler)),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3),
arg4_(arg4)
{
}
binder4(Handler& handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3, const Arg4& arg4)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3),
arg4_(arg4)
{
}
#if defined(ASIO_HAS_MOVE)
binder4(const binder4& other)
: handler_(other.handler_),
arg1_(other.arg1_),
arg2_(other.arg2_),
arg3_(other.arg3_),
arg4_(other.arg4_)
{
}
binder4(binder4&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_)),
arg2_(ASIO_MOVE_CAST(Arg2)(other.arg2_)),
arg3_(ASIO_MOVE_CAST(Arg3)(other.arg3_)),
arg4_(ASIO_MOVE_CAST(Arg4)(other.arg4_))
{
}
#endif // defined(ASIO_HAS_MOVE)
void operator()()
{
handler_(static_cast<const Arg1&>(arg1_),
static_cast<const Arg2&>(arg2_), static_cast<const Arg3&>(arg3_),
static_cast<const Arg4&>(arg4_));
}
void operator()() const
{
handler_(arg1_, arg2_, arg3_, arg4_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
Arg3 arg3_;
Arg4 arg4_;
};
template <typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
inline bool asio_handler_is_continuation(
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(Function& function,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Function, typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(const Function& function,
binder4<Handler, Arg1, Arg2, Arg3, Arg4>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4>
inline binder4<typename decay<Handler>::type, Arg1, Arg2, Arg3, Arg4>
bind_handler(ASIO_MOVE_ARG(Handler) handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3, const Arg4& arg4)
{
return binder4<typename decay<Handler>::type, Arg1, Arg2, Arg3, Arg4>(0,
ASIO_MOVE_CAST(Handler)(handler), arg1, arg2, arg3, arg4);
}
template <typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
class binder5
{
public:
template <typename T>
binder5(int, ASIO_MOVE_ARG(T) handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3, const Arg4& arg4, const Arg5& arg5)
: handler_(ASIO_MOVE_CAST(T)(handler)),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3),
arg4_(arg4),
arg5_(arg5)
{
}
binder5(Handler& handler, const Arg1& arg1, const Arg2& arg2,
const Arg3& arg3, const Arg4& arg4, const Arg5& arg5)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(arg1),
arg2_(arg2),
arg3_(arg3),
arg4_(arg4),
arg5_(arg5)
{
}
#if defined(ASIO_HAS_MOVE)
binder5(const binder5& other)
: handler_(other.handler_),
arg1_(other.arg1_),
arg2_(other.arg2_),
arg3_(other.arg3_),
arg4_(other.arg4_),
arg5_(other.arg5_)
{
}
binder5(binder5&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_)),
arg2_(ASIO_MOVE_CAST(Arg2)(other.arg2_)),
arg3_(ASIO_MOVE_CAST(Arg3)(other.arg3_)),
arg4_(ASIO_MOVE_CAST(Arg4)(other.arg4_)),
arg5_(ASIO_MOVE_CAST(Arg5)(other.arg5_))
{
}
#endif // defined(ASIO_HAS_MOVE)
void operator()()
{
handler_(static_cast<const Arg1&>(arg1_),
static_cast<const Arg2&>(arg2_), static_cast<const Arg3&>(arg3_),
static_cast<const Arg4&>(arg4_), static_cast<const Arg5&>(arg5_));
}
void operator()() const
{
handler_(arg1_, arg2_, arg3_, arg4_, arg5_);
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
Arg3 arg3_;
Arg4 arg4_;
Arg5 arg5_;
};
template <typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
inline bool asio_handler_is_continuation(
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4, typename Arg5>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(Function& function,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Function, typename Handler, typename Arg1,
typename Arg2, typename Arg3, typename Arg4, typename Arg5>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(const Function& function,
binder5<Handler, Arg1, Arg2, Arg3, Arg4, Arg5>* this_handler)
{
asio_handler_invoke_helpers::invoke(
function, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2,
typename Arg3, typename Arg4, typename Arg5>
inline binder5<typename decay<Handler>::type, Arg1, Arg2, Arg3, Arg4, Arg5>
bind_handler(ASIO_MOVE_ARG(Handler) handler, const Arg1& arg1,
const Arg2& arg2, const Arg3& arg3, const Arg4& arg4, const Arg5& arg5)
{
return binder5<typename decay<Handler>::type, Arg1, Arg2, Arg3, Arg4, Arg5>(0,
ASIO_MOVE_CAST(Handler)(handler), arg1, arg2, arg3, arg4, arg5);
}
#if defined(ASIO_HAS_MOVE)
template <typename Handler, typename Arg1>
class move_binder1
{
public:
move_binder1(int, ASIO_MOVE_ARG(Handler) handler,
ASIO_MOVE_ARG(Arg1) arg1)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(ASIO_MOVE_CAST(Arg1)(arg1))
{
}
move_binder1(move_binder1&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_))
{
}
void operator()()
{
handler_(ASIO_MOVE_CAST(Arg1)(arg1_));
}
//private:
Handler handler_;
Arg1 arg1_;
};
template <typename Handler, typename Arg1>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
move_binder1<Handler, Arg1>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
move_binder1<Handler, Arg1>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1>
inline bool asio_handler_is_continuation(
move_binder1<Handler, Arg1>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(ASIO_MOVE_ARG(Function) function,
move_binder1<Handler, Arg1>* this_handler)
{
asio_handler_invoke_helpers::invoke(
ASIO_MOVE_CAST(Function)(function), this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2>
class move_binder2
{
public:
move_binder2(int, ASIO_MOVE_ARG(Handler) handler,
const Arg1& arg1, ASIO_MOVE_ARG(Arg2) arg2)
: handler_(ASIO_MOVE_CAST(Handler)(handler)),
arg1_(arg1),
arg2_(ASIO_MOVE_CAST(Arg2)(arg2))
{
}
move_binder2(move_binder2&& other)
: handler_(ASIO_MOVE_CAST(Handler)(other.handler_)),
arg1_(ASIO_MOVE_CAST(Arg1)(other.arg1_)),
arg2_(ASIO_MOVE_CAST(Arg2)(other.arg2_))
{
}
void operator()()
{
handler_(static_cast<const Arg1&>(arg1_),
ASIO_MOVE_CAST(Arg2)(arg2_));
}
//private:
Handler handler_;
Arg1 arg1_;
Arg2 arg2_;
};
template <typename Handler, typename Arg1, typename Arg2>
inline asio_handler_allocate_is_deprecated
asio_handler_allocate(std::size_t size,
move_binder2<Handler, Arg1, Arg2>* this_handler)
{
#if defined(ASIO_NO_DEPRECATED)
asio_handler_alloc_helpers::allocate(size, this_handler->handler_);
return asio_handler_allocate_is_no_longer_used();
#else // defined(ASIO_NO_DEPRECATED)
return asio_handler_alloc_helpers::allocate(
size, this_handler->handler_);
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2>
inline asio_handler_deallocate_is_deprecated
asio_handler_deallocate(void* pointer, std::size_t size,
move_binder2<Handler, Arg1, Arg2>* this_handler)
{
asio_handler_alloc_helpers::deallocate(
pointer, size, this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_deallocate_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
template <typename Handler, typename Arg1, typename Arg2>
inline bool asio_handler_is_continuation(
move_binder2<Handler, Arg1, Arg2>* this_handler)
{
return asio_handler_cont_helpers::is_continuation(
this_handler->handler_);
}
template <typename Function, typename Handler, typename Arg1, typename Arg2>
inline asio_handler_invoke_is_deprecated
asio_handler_invoke(ASIO_MOVE_ARG(Function) function,
move_binder2<Handler, Arg1, Arg2>* this_handler)
{
asio_handler_invoke_helpers::invoke(
ASIO_MOVE_CAST(Function)(function), this_handler->handler_);
#if defined(ASIO_NO_DEPRECATED)
return asio_handler_invoke_is_no_longer_used();
#endif // defined(ASIO_NO_DEPRECATED)
}
#endif // defined(ASIO_HAS_MOVE)
} // namespace detail
template <typename Handler, typename Arg1, typename Allocator>
struct associated_allocator<detail::binder1<Handler, Arg1>, Allocator>
{
typedef typename associated_allocator<Handler, Allocator>::type type;
static type get(const detail::binder1<Handler, Arg1>& h,
const Allocator& a = Allocator()) ASIO_NOEXCEPT
{
return associated_allocator<Handler, Allocator>::get(h.handler_, a);
}
};
template <typename Handler, typename Arg1, typename Arg2, typename Allocator>
struct associated_allocator<detail::binder2<Handler, Arg1, Arg2>, Allocator>
{
typedef typename associated_allocator<Handler, Allocator>::type type;
static type get(const detail::binder2<Handler, Arg1, Arg2>& h,
const Allocator& a = Allocator()) ASIO_NOEXCEPT
{
return associated_allocator<Handler, Allocator>::get(h.handler_, a);
}
};
template <typename Handler, typename Arg1, typename Executor>
struct associated_executor<detail::binder1<Handler, Arg1>, Executor>
: detail::associated_executor_forwarding_base<Handler, Executor>
{
typedef typename associated_executor<Handler, Executor>::type type;
static type get(const detail::binder1<Handler, Arg1>& h,
const Executor& ex = Executor()) ASIO_NOEXCEPT
{
return associated_executor<Handler, Executor>::get(h.handler_, ex);
}
};
template <typename Handler, typename Arg1, typename Arg2, typename Executor>
struct associated_executor<detail::binder2<Handler, Arg1, Arg2>, Executor>
: detail::associated_executor_forwarding_base<Handler, Executor>
{
typedef typename associated_executor<Handler, Executor>::type type;
static type get(const detail::binder2<Handler, Arg1, Arg2>& h,
const Executor& ex = Executor()) ASIO_NOEXCEPT
{
return associated_executor<Handler, Executor>::get(h.handler_, ex);
}
};
#if defined(ASIO_HAS_MOVE)
template <typename Handler, typename Arg1, typename Allocator>
struct associated_allocator<detail::move_binder1<Handler, Arg1>, Allocator>
{
typedef typename associated_allocator<Handler, Allocator>::type type;
static type get(const detail::move_binder1<Handler, Arg1>& h,
const Allocator& a = Allocator()) ASIO_NOEXCEPT
{
return associated_allocator<Handler, Allocator>::get(h.handler_, a);
}
};
template <typename Handler, typename Arg1, typename Arg2, typename Allocator>
struct associated_allocator<
detail::move_binder2<Handler, Arg1, Arg2>, Allocator>
{
typedef typename associated_allocator<Handler, Allocator>::type type;
static type get(const detail::move_binder2<Handler, Arg1, Arg2>& h,
const Allocator& a = Allocator()) ASIO_NOEXCEPT
{
return associated_allocator<Handler, Allocator>::get(h.handler_, a);
}
};
template <typename Handler, typename Arg1, typename Executor>
struct associated_executor<detail::move_binder1<Handler, Arg1>, Executor>
: detail::associated_executor_forwarding_base<Handler, Executor>
{
typedef typename associated_executor<Handler, Executor>::type type;
static type get(const detail::move_binder1<Handler, Arg1>& h,
const Executor& ex = Executor()) ASIO_NOEXCEPT
{
return associated_executor<Handler, Executor>::get(h.handler_, ex);
}
};
template <typename Handler, typename Arg1, typename Arg2, typename Executor>
struct associated_executor<detail::move_binder2<Handler, Arg1, Arg2>, Executor>
: detail::associated_executor_forwarding_base<Handler, Executor>
{
typedef typename associated_executor<Handler, Executor>::type type;
static type get(const detail::move_binder2<Handler, Arg1, Arg2>& h,
const Executor& ex = Executor()) ASIO_NOEXCEPT
{
return associated_executor<Handler, Executor>::get(h.handler_, ex);
}
};
#endif // defined(ASIO_HAS_MOVE)
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_BIND_HANDLER_HPP

View File

@ -1,107 +0,0 @@
//
// detail/blocking_executor_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BLOCKING_EXECUTOR_OP_HPP
#define ASIO_DETAIL_BLOCKING_EXECUTOR_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/event.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/scheduler_operation.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Operation = scheduler_operation>
class blocking_executor_op_base : public Operation
{
public:
blocking_executor_op_base(typename Operation::func_type complete_func)
: Operation(complete_func),
is_complete_(false)
{
}
void wait()
{
asio::detail::mutex::scoped_lock lock(mutex_);
while (!is_complete_)
event_.wait(lock);
}
protected:
struct do_complete_cleanup
{
~do_complete_cleanup()
{
asio::detail::mutex::scoped_lock lock(op_->mutex_);
op_->is_complete_ = true;
op_->event_.unlock_and_signal_one_for_destruction(lock);
}
blocking_executor_op_base* op_;
};
private:
asio::detail::mutex mutex_;
asio::detail::event event_;
bool is_complete_;
};
template <typename Handler, typename Operation = scheduler_operation>
class blocking_executor_op : public blocking_executor_op_base<Operation>
{
public:
blocking_executor_op(Handler& h)
: blocking_executor_op_base<Operation>(&blocking_executor_op::do_complete),
handler_(h)
{
}
static void do_complete(void* owner, Operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
blocking_executor_op* o(static_cast<blocking_executor_op*>(base));
typename blocking_executor_op_base<Operation>::do_complete_cleanup
on_exit = { o };
(void)on_exit;
ASIO_HANDLER_COMPLETION((*o));
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN(());
asio_handler_invoke_helpers::invoke(o->handler_, o->handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler& handler_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_BLOCKING_EXECUTOR_OP_HPP

View File

@ -1,66 +0,0 @@
//
// detail/buffer_resize_guard.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BUFFER_RESIZE_GUARD_HPP
#define ASIO_DETAIL_BUFFER_RESIZE_GUARD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/limits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper class to manage buffer resizing in an exception safe way.
template <typename Buffer>
class buffer_resize_guard
{
public:
// Constructor.
buffer_resize_guard(Buffer& buffer)
: buffer_(buffer),
old_size_(buffer.size())
{
}
// Destructor rolls back the buffer resize unless commit was called.
~buffer_resize_guard()
{
if (old_size_ != (std::numeric_limits<size_t>::max)())
{
buffer_.resize(old_size_);
}
}
// Commit the resize transaction.
void commit()
{
old_size_ = (std::numeric_limits<size_t>::max)();
}
private:
// The buffer being managed.
Buffer& buffer_;
// The size of the buffer at the time the guard was constructed.
size_t old_size_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_BUFFER_RESIZE_GUARD_HPP

View File

@ -1,650 +0,0 @@
//
// detail/buffer_sequence_adapter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BUFFER_SEQUENCE_ADAPTER_HPP
#define ASIO_DETAIL_BUFFER_SEQUENCE_ADAPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/array_fwd.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class buffer_sequence_adapter_base
{
#if defined(ASIO_WINDOWS_RUNTIME)
public:
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 1 };
protected:
typedef Windows::Storage::Streams::IBuffer^ native_buffer_type;
ASIO_DECL static void init_native_buffer(
native_buffer_type& buf,
const asio::mutable_buffer& buffer);
ASIO_DECL static void init_native_buffer(
native_buffer_type& buf,
const asio::const_buffer& buffer);
#elif defined(ASIO_WINDOWS) || defined(__CYGWIN__)
public:
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 64 < max_iov_len ? 64 : max_iov_len };
protected:
typedef WSABUF native_buffer_type;
static void init_native_buffer(WSABUF& buf,
const asio::mutable_buffer& buffer)
{
buf.buf = static_cast<char*>(buffer.data());
buf.len = static_cast<ULONG>(buffer.size());
}
static void init_native_buffer(WSABUF& buf,
const asio::const_buffer& buffer)
{
buf.buf = const_cast<char*>(static_cast<const char*>(buffer.data()));
buf.len = static_cast<ULONG>(buffer.size());
}
#else // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
public:
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 64 < max_iov_len ? 64 : max_iov_len };
protected:
typedef iovec native_buffer_type;
static void init_iov_base(void*& base, void* addr)
{
base = addr;
}
template <typename T>
static void init_iov_base(T& base, void* addr)
{
base = static_cast<T>(addr);
}
static void init_native_buffer(iovec& iov,
const asio::mutable_buffer& buffer)
{
init_iov_base(iov.iov_base, buffer.data());
iov.iov_len = buffer.size();
}
static void init_native_buffer(iovec& iov,
const asio::const_buffer& buffer)
{
init_iov_base(iov.iov_base, const_cast<void*>(buffer.data()));
iov.iov_len = buffer.size();
}
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
};
// Helper class to translate buffers into the native buffer representation.
template <typename Buffer, typename Buffers>
class buffer_sequence_adapter
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = false };
explicit buffer_sequence_adapter(const Buffers& buffer_sequence)
: count_(0), total_buffer_size_(0)
{
buffer_sequence_adapter::init(
asio::buffer_sequence_begin(buffer_sequence),
asio::buffer_sequence_end(buffer_sequence));
}
native_buffer_type* buffers()
{
return buffers_;
}
std::size_t count() const
{
return count_;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const Buffers& buffer_sequence)
{
return buffer_sequence_adapter::all_empty(
asio::buffer_sequence_begin(buffer_sequence),
asio::buffer_sequence_end(buffer_sequence));
}
static void validate(const Buffers& buffer_sequence)
{
buffer_sequence_adapter::validate(
asio::buffer_sequence_begin(buffer_sequence),
asio::buffer_sequence_end(buffer_sequence));
}
static Buffer first(const Buffers& buffer_sequence)
{
return buffer_sequence_adapter::first(
asio::buffer_sequence_begin(buffer_sequence),
asio::buffer_sequence_end(buffer_sequence));
}
enum { linearisation_storage_size = 8192 };
static Buffer linearise(const Buffers& buffer_sequence,
const asio::mutable_buffer& storage)
{
return buffer_sequence_adapter::linearise(
asio::buffer_sequence_begin(buffer_sequence),
asio::buffer_sequence_end(buffer_sequence), storage);
}
private:
template <typename Iterator>
void init(Iterator begin, Iterator end)
{
Iterator iter = begin;
for (; iter != end && count_ < max_buffers; ++iter, ++count_)
{
Buffer buffer(*iter);
init_native_buffer(buffers_[count_], buffer);
total_buffer_size_ += buffer.size();
}
}
template <typename Iterator>
static bool all_empty(Iterator begin, Iterator end)
{
Iterator iter = begin;
std::size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
if (Buffer(*iter).size() > 0)
return false;
return true;
}
template <typename Iterator>
static void validate(Iterator begin, Iterator end)
{
Iterator iter = begin;
for (; iter != end; ++iter)
{
Buffer buffer(*iter);
buffer.data();
}
}
template <typename Iterator>
static Buffer first(Iterator begin, Iterator end)
{
Iterator iter = begin;
for (; iter != end; ++iter)
{
Buffer buffer(*iter);
if (buffer.size() != 0)
return buffer;
}
return Buffer();
}
template <typename Iterator>
static Buffer linearise(Iterator begin, Iterator end,
const asio::mutable_buffer& storage)
{
asio::mutable_buffer unused_storage = storage;
Iterator iter = begin;
while (iter != end && unused_storage.size() != 0)
{
Buffer buffer(*iter);
++iter;
if (buffer.size() == 0)
continue;
if (unused_storage.size() == storage.size())
{
if (iter == end)
return buffer;
if (buffer.size() >= unused_storage.size())
return buffer;
}
unused_storage += asio::buffer_copy(unused_storage, buffer);
}
return Buffer(storage.data(), storage.size() - unused_storage.size());
}
native_buffer_type buffers_[max_buffers];
std::size_t count_;
std::size_t total_buffer_size_;
};
template <typename Buffer>
class buffer_sequence_adapter<Buffer, asio::mutable_buffer>
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = true };
explicit buffer_sequence_adapter(
const asio::mutable_buffer& buffer_sequence)
{
init_native_buffer(buffer_, Buffer(buffer_sequence));
total_buffer_size_ = buffer_sequence.size();
}
native_buffer_type* buffers()
{
return &buffer_;
}
std::size_t count() const
{
return 1;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const asio::mutable_buffer& buffer_sequence)
{
return buffer_sequence.size() == 0;
}
static void validate(const asio::mutable_buffer& buffer_sequence)
{
buffer_sequence.data();
}
static Buffer first(const asio::mutable_buffer& buffer_sequence)
{
return Buffer(buffer_sequence);
}
enum { linearisation_storage_size = 1 };
static Buffer linearise(const asio::mutable_buffer& buffer_sequence,
const Buffer&)
{
return Buffer(buffer_sequence);
}
private:
native_buffer_type buffer_;
std::size_t total_buffer_size_;
};
template <typename Buffer>
class buffer_sequence_adapter<Buffer, asio::const_buffer>
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = true };
explicit buffer_sequence_adapter(
const asio::const_buffer& buffer_sequence)
{
init_native_buffer(buffer_, Buffer(buffer_sequence));
total_buffer_size_ = buffer_sequence.size();
}
native_buffer_type* buffers()
{
return &buffer_;
}
std::size_t count() const
{
return 1;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const asio::const_buffer& buffer_sequence)
{
return buffer_sequence.size() == 0;
}
static void validate(const asio::const_buffer& buffer_sequence)
{
buffer_sequence.data();
}
static Buffer first(const asio::const_buffer& buffer_sequence)
{
return Buffer(buffer_sequence);
}
enum { linearisation_storage_size = 1 };
static Buffer linearise(const asio::const_buffer& buffer_sequence,
const Buffer&)
{
return Buffer(buffer_sequence);
}
private:
native_buffer_type buffer_;
std::size_t total_buffer_size_;
};
#if !defined(ASIO_NO_DEPRECATED)
template <typename Buffer>
class buffer_sequence_adapter<Buffer, asio::mutable_buffers_1>
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = true };
explicit buffer_sequence_adapter(
const asio::mutable_buffers_1& buffer_sequence)
{
init_native_buffer(buffer_, Buffer(buffer_sequence));
total_buffer_size_ = buffer_sequence.size();
}
native_buffer_type* buffers()
{
return &buffer_;
}
std::size_t count() const
{
return 1;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const asio::mutable_buffers_1& buffer_sequence)
{
return buffer_sequence.size() == 0;
}
static void validate(const asio::mutable_buffers_1& buffer_sequence)
{
buffer_sequence.data();
}
static Buffer first(const asio::mutable_buffers_1& buffer_sequence)
{
return Buffer(buffer_sequence);
}
enum { linearisation_storage_size = 1 };
static Buffer linearise(const asio::mutable_buffers_1& buffer_sequence,
const Buffer&)
{
return Buffer(buffer_sequence);
}
private:
native_buffer_type buffer_;
std::size_t total_buffer_size_;
};
template <typename Buffer>
class buffer_sequence_adapter<Buffer, asio::const_buffers_1>
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = true };
explicit buffer_sequence_adapter(
const asio::const_buffers_1& buffer_sequence)
{
init_native_buffer(buffer_, Buffer(buffer_sequence));
total_buffer_size_ = buffer_sequence.size();
}
native_buffer_type* buffers()
{
return &buffer_;
}
std::size_t count() const
{
return 1;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const asio::const_buffers_1& buffer_sequence)
{
return buffer_sequence.size() == 0;
}
static void validate(const asio::const_buffers_1& buffer_sequence)
{
buffer_sequence.data();
}
static Buffer first(const asio::const_buffers_1& buffer_sequence)
{
return Buffer(buffer_sequence);
}
enum { linearisation_storage_size = 1 };
static Buffer linearise(const asio::const_buffers_1& buffer_sequence,
const Buffer&)
{
return Buffer(buffer_sequence);
}
private:
native_buffer_type buffer_;
std::size_t total_buffer_size_;
};
#endif // !defined(ASIO_NO_DEPRECATED)
template <typename Buffer, typename Elem>
class buffer_sequence_adapter<Buffer, boost::array<Elem, 2> >
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = false };
explicit buffer_sequence_adapter(
const boost::array<Elem, 2>& buffer_sequence)
{
init_native_buffer(buffers_[0], Buffer(buffer_sequence[0]));
init_native_buffer(buffers_[1], Buffer(buffer_sequence[1]));
total_buffer_size_ = buffer_sequence[0].size() + buffer_sequence[1].size();
}
native_buffer_type* buffers()
{
return buffers_;
}
std::size_t count() const
{
return 2;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const boost::array<Elem, 2>& buffer_sequence)
{
return buffer_sequence[0].size() == 0 && buffer_sequence[1].size() == 0;
}
static void validate(const boost::array<Elem, 2>& buffer_sequence)
{
buffer_sequence[0].data();
buffer_sequence[1].data();
}
static Buffer first(const boost::array<Elem, 2>& buffer_sequence)
{
return Buffer(buffer_sequence[0].size() != 0
? buffer_sequence[0] : buffer_sequence[1]);
}
enum { linearisation_storage_size = 8192 };
static Buffer linearise(const boost::array<Elem, 2>& buffer_sequence,
const asio::mutable_buffer& storage)
{
if (buffer_sequence[0].size() == 0)
return Buffer(buffer_sequence[1]);
if (buffer_sequence[1].size() == 0)
return Buffer(buffer_sequence[0]);
return Buffer(storage.data(),
asio::buffer_copy(storage, buffer_sequence));
}
private:
native_buffer_type buffers_[2];
std::size_t total_buffer_size_;
};
#if defined(ASIO_HAS_STD_ARRAY)
template <typename Buffer, typename Elem>
class buffer_sequence_adapter<Buffer, std::array<Elem, 2> >
: buffer_sequence_adapter_base
{
public:
enum { is_single_buffer = false };
explicit buffer_sequence_adapter(
const std::array<Elem, 2>& buffer_sequence)
{
init_native_buffer(buffers_[0], Buffer(buffer_sequence[0]));
init_native_buffer(buffers_[1], Buffer(buffer_sequence[1]));
total_buffer_size_ = buffer_sequence[0].size() + buffer_sequence[1].size();
}
native_buffer_type* buffers()
{
return buffers_;
}
std::size_t count() const
{
return 2;
}
std::size_t total_size() const
{
return total_buffer_size_;
}
bool all_empty() const
{
return total_buffer_size_ == 0;
}
static bool all_empty(const std::array<Elem, 2>& buffer_sequence)
{
return buffer_sequence[0].size() == 0 && buffer_sequence[1].size() == 0;
}
static void validate(const std::array<Elem, 2>& buffer_sequence)
{
buffer_sequence[0].data();
buffer_sequence[1].data();
}
static Buffer first(const std::array<Elem, 2>& buffer_sequence)
{
return Buffer(buffer_sequence[0].size() != 0
? buffer_sequence[0] : buffer_sequence[1]);
}
enum { linearisation_storage_size = 8192 };
static Buffer linearise(const std::array<Elem, 2>& buffer_sequence,
const asio::mutable_buffer& storage)
{
if (buffer_sequence[0].size() == 0)
return Buffer(buffer_sequence[1]);
if (buffer_sequence[1].size() == 0)
return Buffer(buffer_sequence[0]);
return Buffer(storage.data(),
asio::buffer_copy(storage, buffer_sequence));
}
private:
native_buffer_type buffers_[2];
std::size_t total_buffer_size_;
};
#endif // defined(ASIO_HAS_STD_ARRAY)
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/buffer_sequence_adapter.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_DETAIL_BUFFER_SEQUENCE_ADAPTER_HPP

View File

@ -1,126 +0,0 @@
//
// detail/buffered_stream_storage.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BUFFERED_STREAM_STORAGE_HPP
#define ASIO_DETAIL_BUFFERED_STREAM_STORAGE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/buffer.hpp"
#include "asio/detail/assert.hpp"
#include <cstddef>
#include <cstring>
#include <vector>
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class buffered_stream_storage
{
public:
// The type of the bytes stored in the buffer.
typedef unsigned char byte_type;
// The type used for offsets into the buffer.
typedef std::size_t size_type;
// Constructor.
explicit buffered_stream_storage(std::size_t buffer_capacity)
: begin_offset_(0),
end_offset_(0),
buffer_(buffer_capacity)
{
}
/// Clear the buffer.
void clear()
{
begin_offset_ = 0;
end_offset_ = 0;
}
// Return a pointer to the beginning of the unread data.
mutable_buffer data()
{
return asio::buffer(buffer_) + begin_offset_;
}
// Return a pointer to the beginning of the unread data.
const_buffer data() const
{
return asio::buffer(buffer_) + begin_offset_;
}
// Is there no unread data in the buffer.
bool empty() const
{
return begin_offset_ == end_offset_;
}
// Return the amount of unread data the is in the buffer.
size_type size() const
{
return end_offset_ - begin_offset_;
}
// Resize the buffer to the specified length.
void resize(size_type length)
{
ASIO_ASSERT(length <= capacity());
if (begin_offset_ + length <= capacity())
{
end_offset_ = begin_offset_ + length;
}
else
{
using namespace std; // For memmove.
memmove(&buffer_[0], &buffer_[0] + begin_offset_, size());
end_offset_ = length;
begin_offset_ = 0;
}
}
// Return the maximum size for data in the buffer.
size_type capacity() const
{
return buffer_.size();
}
// Consume multiple bytes from the beginning of the buffer.
void consume(size_type count)
{
ASIO_ASSERT(begin_offset_ + count <= end_offset_);
begin_offset_ += count;
if (empty())
clear();
}
private:
// The offset to the beginning of the unread data.
size_type begin_offset_;
// The offset to the end of the unread data.
size_type end_offset_;
// The data in the buffer.
std::vector<byte_type> buffer_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_BUFFERED_STREAM_STORAGE_HPP

View File

@ -1,88 +0,0 @@
//
// detail/bulk_executor_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_BULK_EXECUTOR_OP_HPP
#define ASIO_DETAIL_BULK_EXECUTOR_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/scheduler_operation.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Handler, typename Alloc,
typename Operation = scheduler_operation>
class bulk_executor_op : public Operation
{
public:
ASIO_DEFINE_HANDLER_ALLOCATOR_PTR(bulk_executor_op);
template <typename H>
bulk_executor_op(ASIO_MOVE_ARG(H) h,
const Alloc& allocator, std::size_t i)
: Operation(&bulk_executor_op::do_complete),
handler_(ASIO_MOVE_CAST(H)(h)),
allocator_(allocator),
index_(i)
{
}
static void do_complete(void* owner, Operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
bulk_executor_op* o(static_cast<bulk_executor_op*>(base));
Alloc allocator(o->allocator_);
ptr p = { detail::addressof(allocator), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder1<Handler, std::size_t> handler(o->handler_, o->index_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN(());
asio_handler_invoke_helpers::invoke(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
Alloc allocator_;
std::size_t index_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_BULK_EXECUTOR_OP_HPP

View File

@ -1,125 +0,0 @@
//
// detail/call_stack.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CALL_STACK_HPP
#define ASIO_DETAIL_CALL_STACK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/tss_ptr.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper class to determine whether or not the current thread is inside an
// invocation of io_context::run() for a specified io_context object.
template <typename Key, typename Value = unsigned char>
class call_stack
{
public:
// Context class automatically pushes the key/value pair on to the stack.
class context
: private noncopyable
{
public:
// Push the key on to the stack.
explicit context(Key* k)
: key_(k),
next_(call_stack<Key, Value>::top_)
{
value_ = reinterpret_cast<unsigned char*>(this);
call_stack<Key, Value>::top_ = this;
}
// Push the key/value pair on to the stack.
context(Key* k, Value& v)
: key_(k),
value_(&v),
next_(call_stack<Key, Value>::top_)
{
call_stack<Key, Value>::top_ = this;
}
// Pop the key/value pair from the stack.
~context()
{
call_stack<Key, Value>::top_ = next_;
}
// Find the next context with the same key.
Value* next_by_key() const
{
context* elem = next_;
while (elem)
{
if (elem->key_ == key_)
return elem->value_;
elem = elem->next_;
}
return 0;
}
private:
friend class call_stack<Key, Value>;
// The key associated with the context.
Key* key_;
// The value associated with the context.
Value* value_;
// The next element in the stack.
context* next_;
};
friend class context;
// Determine whether the specified owner is on the stack. Returns address of
// key if present, 0 otherwise.
static Value* contains(Key* k)
{
context* elem = top_;
while (elem)
{
if (elem->key_ == k)
return elem->value_;
elem = elem->next_;
}
return 0;
}
// Obtain the value at the top of the stack.
static Value* top()
{
context* elem = top_;
return elem ? elem->value_ : 0;
}
private:
// The top of the stack of calls for the current thread.
static tss_ptr<context> top_;
};
template <typename Key, typename Value>
tss_ptr<typename call_stack<Key, Value>::context>
call_stack<Key, Value>::top_;
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_CALL_STACK_HPP

View File

@ -1,66 +0,0 @@
//
// detail/chrono.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CHRONO_HPP
#define ASIO_DETAIL_CHRONO_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_STD_CHRONO)
# include <chrono>
#elif defined(ASIO_HAS_BOOST_CHRONO)
# include <boost/chrono/system_clocks.hpp>
#endif // defined(ASIO_HAS_BOOST_CHRONO)
namespace asio {
namespace chrono {
#if defined(ASIO_HAS_STD_CHRONO)
using std::chrono::duration;
using std::chrono::time_point;
using std::chrono::duration_cast;
using std::chrono::nanoseconds;
using std::chrono::microseconds;
using std::chrono::milliseconds;
using std::chrono::seconds;
using std::chrono::minutes;
using std::chrono::hours;
using std::chrono::time_point_cast;
#if defined(ASIO_HAS_STD_CHRONO_MONOTONIC_CLOCK)
typedef std::chrono::monotonic_clock steady_clock;
#else // defined(ASIO_HAS_STD_CHRONO_MONOTONIC_CLOCK)
using std::chrono::steady_clock;
#endif // defined(ASIO_HAS_STD_CHRONO_MONOTONIC_CLOCK)
using std::chrono::system_clock;
using std::chrono::high_resolution_clock;
#elif defined(ASIO_HAS_BOOST_CHRONO)
using boost::chrono::duration;
using boost::chrono::time_point;
using boost::chrono::duration_cast;
using boost::chrono::nanoseconds;
using boost::chrono::microseconds;
using boost::chrono::milliseconds;
using boost::chrono::seconds;
using boost::chrono::minutes;
using boost::chrono::hours;
using boost::chrono::time_point_cast;
using boost::chrono::system_clock;
using boost::chrono::steady_clock;
using boost::chrono::high_resolution_clock;
#endif // defined(ASIO_HAS_BOOST_CHRONO)
} // namespace chrono
} // namespace asio
#endif // ASIO_DETAIL_CHRONO_HPP

View File

@ -1,190 +0,0 @@
//
// detail/chrono_time_traits.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CHRONO_TIME_TRAITS_HPP
#define ASIO_DETAIL_CHRONO_TIME_TRAITS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/cstdint.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper template to compute the greatest common divisor.
template <int64_t v1, int64_t v2>
struct gcd { enum { value = gcd<v2, v1 % v2>::value }; };
template <int64_t v1>
struct gcd<v1, 0> { enum { value = v1 }; };
// Adapts std::chrono clocks for use with a deadline timer.
template <typename Clock, typename WaitTraits>
struct chrono_time_traits
{
// The clock type.
typedef Clock clock_type;
// The duration type of the clock.
typedef typename clock_type::duration duration_type;
// The time point type of the clock.
typedef typename clock_type::time_point time_type;
// The period of the clock.
typedef typename duration_type::period period_type;
// Get the current time.
static time_type now()
{
return clock_type::now();
}
// Add a duration to a time.
static time_type add(const time_type& t, const duration_type& d)
{
const time_type epoch;
if (t >= epoch)
{
if ((time_type::max)() - t < d)
return (time_type::max)();
}
else // t < epoch
{
if (-(t - (time_type::min)()) > d)
return (time_type::min)();
}
return t + d;
}
// Subtract one time from another.
static duration_type subtract(const time_type& t1, const time_type& t2)
{
const time_type epoch;
if (t1 >= epoch)
{
if (t2 >= epoch)
{
return t1 - t2;
}
else if (t2 == (time_type::min)())
{
return (duration_type::max)();
}
else if ((time_type::max)() - t1 < epoch - t2)
{
return (duration_type::max)();
}
else
{
return t1 - t2;
}
}
else // t1 < epoch
{
if (t2 < epoch)
{
return t1 - t2;
}
else if (t1 == (time_type::min)())
{
return (duration_type::min)();
}
else if ((time_type::max)() - t2 < epoch - t1)
{
return (duration_type::min)();
}
else
{
return -(t2 - t1);
}
}
}
// Test whether one time is less than another.
static bool less_than(const time_type& t1, const time_type& t2)
{
return t1 < t2;
}
// Implement just enough of the posix_time::time_duration interface to supply
// what the timer_queue requires.
class posix_time_duration
{
public:
explicit posix_time_duration(const duration_type& d)
: d_(d)
{
}
int64_t ticks() const
{
return d_.count();
}
int64_t total_seconds() const
{
return duration_cast<1, 1>();
}
int64_t total_milliseconds() const
{
return duration_cast<1, 1000>();
}
int64_t total_microseconds() const
{
return duration_cast<1, 1000000>();
}
private:
template <int64_t Num, int64_t Den>
int64_t duration_cast() const
{
const int64_t num1 = period_type::num / gcd<period_type::num, Num>::value;
const int64_t num2 = Num / gcd<period_type::num, Num>::value;
const int64_t den1 = period_type::den / gcd<period_type::den, Den>::value;
const int64_t den2 = Den / gcd<period_type::den, Den>::value;
const int64_t num = num1 * den2;
const int64_t den = num2 * den1;
if (num == 1 && den == 1)
return ticks();
else if (num != 1 && den == 1)
return ticks() * num;
else if (num == 1 && period_type::den != 1)
return ticks() / den;
else
return ticks() * num / den;
}
duration_type d_;
};
// Convert to POSIX duration type.
static posix_time_duration to_posix_duration(const duration_type& d)
{
return posix_time_duration(WaitTraits::to_wait_duration(d));
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_CHRONO_TIME_TRAITS_HPP

View File

@ -1,88 +0,0 @@
//
// detail/completion_handler.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_COMPLETION_HANDLER_HPP
#define ASIO_DETAIL_COMPLETION_HANDLER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/operation.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Handler, typename IoExecutor>
class completion_handler : public operation
{
public:
ASIO_DEFINE_HANDLER_PTR(completion_handler);
completion_handler(Handler& h, const IoExecutor& io_ex)
: operation(&completion_handler::do_complete),
handler_(ASIO_MOVE_CAST(Handler)(h)),
work_(handler_, io_ex)
{
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
completion_handler* h(static_cast<completion_handler*>(base));
ptr p = { asio::detail::addressof(h->handler_), h, h };
ASIO_HANDLER_COMPLETION((*h));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
ASIO_MOVE_CAST2(handler_work<Handler, IoExecutor>)(
h->work_));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
Handler handler(ASIO_MOVE_CAST(Handler)(h->handler_));
p.h = asio::detail::addressof(handler);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN(());
w.complete(handler, handler);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_COMPLETION_HANDLER_HPP

View File

@ -1,94 +0,0 @@
//
// detail/concurrency_hint.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CONCURRENCY_HINT_HPP
#define ASIO_DETAIL_CONCURRENCY_HINT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/noncopyable.hpp"
// The concurrency hint ID and mask are used to identify when a "well-known"
// concurrency hint value has been passed to the io_context.
#define ASIO_CONCURRENCY_HINT_ID 0xA5100000u
#define ASIO_CONCURRENCY_HINT_ID_MASK 0xFFFF0000u
// If set, this bit indicates that the scheduler should perform locking.
#define ASIO_CONCURRENCY_HINT_LOCKING_SCHEDULER 0x1u
// If set, this bit indicates that the reactor should perform locking when
// managing descriptor registrations.
#define ASIO_CONCURRENCY_HINT_LOCKING_REACTOR_REGISTRATION 0x2u
// If set, this bit indicates that the reactor should perform locking for I/O.
#define ASIO_CONCURRENCY_HINT_LOCKING_REACTOR_IO 0x4u
// Helper macro to determine if we have a special concurrency hint.
#define ASIO_CONCURRENCY_HINT_IS_SPECIAL(hint) \
((static_cast<unsigned>(hint) \
& ASIO_CONCURRENCY_HINT_ID_MASK) \
== ASIO_CONCURRENCY_HINT_ID)
// Helper macro to determine if locking is enabled for a given facility.
#define ASIO_CONCURRENCY_HINT_IS_LOCKING(facility, hint) \
(((static_cast<unsigned>(hint) \
& (ASIO_CONCURRENCY_HINT_ID_MASK \
| ASIO_CONCURRENCY_HINT_LOCKING_ ## facility)) \
^ ASIO_CONCURRENCY_HINT_ID) != 0)
// This special concurrency hint disables locking in both the scheduler and
// reactor I/O. This hint has the following restrictions:
//
// - Care must be taken to ensure that all operations on the io_context and any
// of its associated I/O objects (such as sockets and timers) occur in only
// one thread at a time.
//
// - Asynchronous resolve operations fail with operation_not_supported.
//
// - If a signal_set is used with the io_context, signal_set objects cannot be
// used with any other io_context in the program.
#define ASIO_CONCURRENCY_HINT_UNSAFE \
static_cast<int>(ASIO_CONCURRENCY_HINT_ID)
// This special concurrency hint disables locking in the reactor I/O. This hint
// has the following restrictions:
//
// - Care must be taken to ensure that run functions on the io_context, and all
// operations on the io_context's associated I/O objects (such as sockets and
// timers), occur in only one thread at a time.
#define ASIO_CONCURRENCY_HINT_UNSAFE_IO \
static_cast<int>(ASIO_CONCURRENCY_HINT_ID \
| ASIO_CONCURRENCY_HINT_LOCKING_SCHEDULER \
| ASIO_CONCURRENCY_HINT_LOCKING_REACTOR_REGISTRATION)
// The special concurrency hint provides full thread safety.
#define ASIO_CONCURRENCY_HINT_SAFE \
static_cast<int>(ASIO_CONCURRENCY_HINT_ID \
| ASIO_CONCURRENCY_HINT_LOCKING_SCHEDULER \
| ASIO_CONCURRENCY_HINT_LOCKING_REACTOR_REGISTRATION \
| ASIO_CONCURRENCY_HINT_LOCKING_REACTOR_IO)
// This #define may be overridden at compile time to specify a program-wide
// default concurrency hint, used by the zero-argument io_context constructor.
#if !defined(ASIO_CONCURRENCY_HINT_DEFAULT)
# define ASIO_CONCURRENCY_HINT_DEFAULT -1
#endif // !defined(ASIO_CONCURRENCY_HINT_DEFAULT)
// This #define may be overridden at compile time to specify a program-wide
// concurrency hint, used by the one-argument io_context constructor when
// passed a value of 1.
#if !defined(ASIO_CONCURRENCY_HINT_1)
# define ASIO_CONCURRENCY_HINT_1 1
#endif // !defined(ASIO_CONCURRENCY_HINT_DEFAULT)
#endif // ASIO_DETAIL_CONCURRENCY_HINT_HPP

View File

@ -1,120 +0,0 @@
//
// detail/conditionally_enabled_event.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CONDITIONALLY_ENABLED_EVENT_HPP
#define ASIO_DETAIL_CONDITIONALLY_ENABLED_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/conditionally_enabled_mutex.hpp"
#include "asio/detail/event.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/null_event.hpp"
#include "asio/detail/scoped_lock.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Mutex adapter used to conditionally enable or disable locking.
class conditionally_enabled_event
: private noncopyable
{
public:
// Constructor.
conditionally_enabled_event()
{
}
// Destructor.
~conditionally_enabled_event()
{
}
// Signal the event. (Retained for backward compatibility.)
void signal(conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
event_.signal(lock);
}
// Signal all waiters.
void signal_all(conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
event_.signal_all(lock);
}
// Unlock the mutex and signal one waiter.
void unlock_and_signal_one(
conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
event_.unlock_and_signal_one(lock);
}
// Unlock the mutex and signal one waiter who may destroy us.
void unlock_and_signal_one_for_destruction(
conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
event_.unlock_and_signal_one(lock);
}
// If there's a waiter, unlock the mutex and signal it.
bool maybe_unlock_and_signal_one(
conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
return event_.maybe_unlock_and_signal_one(lock);
else
return false;
}
// Reset the event.
void clear(conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
event_.clear(lock);
}
// Wait for the event to become signalled.
void wait(conditionally_enabled_mutex::scoped_lock& lock)
{
if (lock.mutex_.enabled_)
event_.wait(lock);
else
null_event().wait(lock);
}
// Timed wait for the event to become signalled.
bool wait_for_usec(
conditionally_enabled_mutex::scoped_lock& lock, long usec)
{
if (lock.mutex_.enabled_)
return event_.wait_for_usec(lock, usec);
else
return null_event().wait_for_usec(lock, usec);
}
private:
asio::detail::event event_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_CONDITIONALLY_ENABLED_EVENT_HPP

View File

@ -1,149 +0,0 @@
//
// detail/conditionally_enabled_mutex.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CONDITIONALLY_ENABLED_MUTEX_HPP
#define ASIO_DETAIL_CONDITIONALLY_ENABLED_MUTEX_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/scoped_lock.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Mutex adapter used to conditionally enable or disable locking.
class conditionally_enabled_mutex
: private noncopyable
{
public:
// Helper class to lock and unlock a mutex automatically.
class scoped_lock
: private noncopyable
{
public:
// Tag type used to distinguish constructors.
enum adopt_lock_t { adopt_lock };
// Constructor adopts a lock that is already held.
scoped_lock(conditionally_enabled_mutex& m, adopt_lock_t)
: mutex_(m),
locked_(m.enabled_)
{
}
// Constructor acquires the lock.
explicit scoped_lock(conditionally_enabled_mutex& m)
: mutex_(m)
{
if (m.enabled_)
{
mutex_.mutex_.lock();
locked_ = true;
}
else
locked_ = false;
}
// Destructor releases the lock.
~scoped_lock()
{
if (locked_)
mutex_.mutex_.unlock();
}
// Explicitly acquire the lock.
void lock()
{
if (mutex_.enabled_ && !locked_)
{
mutex_.mutex_.lock();
locked_ = true;
}
}
// Explicitly release the lock.
void unlock()
{
if (locked_)
{
mutex_.unlock();
locked_ = false;
}
}
// Test whether the lock is held.
bool locked() const
{
return locked_;
}
// Get the underlying mutex.
asio::detail::mutex& mutex()
{
return mutex_.mutex_;
}
private:
friend class conditionally_enabled_event;
conditionally_enabled_mutex& mutex_;
bool locked_;
};
// Constructor.
explicit conditionally_enabled_mutex(bool enabled)
: enabled_(enabled)
{
}
// Destructor.
~conditionally_enabled_mutex()
{
}
// Determine whether locking is enabled.
bool enabled() const
{
return enabled_;
}
// Lock the mutex.
void lock()
{
if (enabled_)
mutex_.lock();
}
// Unlock the mutex.
void unlock()
{
if (enabled_)
mutex_.unlock();
}
private:
friend class scoped_lock;
friend class conditionally_enabled_event;
asio::detail::mutex mutex_;
const bool enabled_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_CONDITIONALLY_ENABLED_MUTEX_HPP

File diff suppressed because it is too large Load Diff

View File

@ -1,414 +0,0 @@
//
// detail/consuming_buffers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CONSUMING_BUFFERS_HPP
#define ASIO_DETAIL_CONSUMING_BUFFERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/buffer.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/limits.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
// Helper template to determine the maximum number of prepared buffers.
template <typename Buffers>
struct prepared_buffers_max
{
enum { value = buffer_sequence_adapter_base::max_buffers };
};
template <typename Elem, std::size_t N>
struct prepared_buffers_max<boost::array<Elem, N> >
{
enum { value = N };
};
#if defined(ASIO_HAS_STD_ARRAY)
template <typename Elem, std::size_t N>
struct prepared_buffers_max<std::array<Elem, N> >
{
enum { value = N };
};
#endif // defined(ASIO_HAS_STD_ARRAY)
// A buffer sequence used to represent a subsequence of the buffers.
template <typename Buffer, std::size_t MaxBuffers>
struct prepared_buffers
{
typedef Buffer value_type;
typedef const Buffer* const_iterator;
enum { max_buffers = MaxBuffers < 16 ? MaxBuffers : 16 };
prepared_buffers() : count(0) {}
const_iterator begin() const { return elems; }
const_iterator end() const { return elems + count; }
Buffer elems[max_buffers];
std::size_t count;
};
// A proxy for a sub-range in a list of buffers.
template <typename Buffer, typename Buffers, typename Buffer_Iterator>
class consuming_buffers
{
public:
typedef prepared_buffers<Buffer, prepared_buffers_max<Buffers>::value>
prepared_buffers_type;
// Construct to represent the entire list of buffers.
explicit consuming_buffers(const Buffers& buffers)
: buffers_(buffers),
total_consumed_(0),
next_elem_(0),
next_elem_offset_(0)
{
using asio::buffer_size;
total_size_ = buffer_size(buffers);
}
// Determine if we are at the end of the buffers.
bool empty() const
{
return total_consumed_ >= total_size_;
}
// Get the buffer for a single transfer, with a size.
prepared_buffers_type prepare(std::size_t max_size)
{
prepared_buffers_type result;
Buffer_Iterator next = asio::buffer_sequence_begin(buffers_);
Buffer_Iterator end = asio::buffer_sequence_end(buffers_);
std::advance(next, next_elem_);
std::size_t elem_offset = next_elem_offset_;
while (next != end && max_size > 0 && (result.count) < result.max_buffers)
{
Buffer next_buf = Buffer(*next) + elem_offset;
result.elems[result.count] = asio::buffer(next_buf, max_size);
max_size -= result.elems[result.count].size();
elem_offset = 0;
if (result.elems[result.count].size() > 0)
++result.count;
++next;
}
return result;
}
// Consume the specified number of bytes from the buffers.
void consume(std::size_t size)
{
total_consumed_ += size;
Buffer_Iterator next = asio::buffer_sequence_begin(buffers_);
Buffer_Iterator end = asio::buffer_sequence_end(buffers_);
std::advance(next, next_elem_);
while (next != end && size > 0)
{
Buffer next_buf = Buffer(*next) + next_elem_offset_;
if (size < next_buf.size())
{
next_elem_offset_ += size;
size = 0;
}
else
{
size -= next_buf.size();
next_elem_offset_ = 0;
++next_elem_;
++next;
}
}
}
// Get the total number of bytes consumed from the buffers.
std::size_t total_consumed() const
{
return total_consumed_;
}
private:
Buffers buffers_;
std::size_t total_size_;
std::size_t total_consumed_;
std::size_t next_elem_;
std::size_t next_elem_offset_;
};
// Base class of all consuming_buffers specialisations for single buffers.
template <typename Buffer>
class consuming_single_buffer
{
public:
// Construct to represent the entire list of buffers.
template <typename Buffer1>
explicit consuming_single_buffer(const Buffer1& buffer)
: buffer_(buffer),
total_consumed_(0)
{
}
// Determine if we are at the end of the buffers.
bool empty() const
{
return total_consumed_ >= buffer_.size();
}
// Get the buffer for a single transfer, with a size.
Buffer prepare(std::size_t max_size)
{
return asio::buffer(buffer_ + total_consumed_, max_size);
}
// Consume the specified number of bytes from the buffers.
void consume(std::size_t size)
{
total_consumed_ += size;
}
// Get the total number of bytes consumed from the buffers.
std::size_t total_consumed() const
{
return total_consumed_;
}
private:
Buffer buffer_;
std::size_t total_consumed_;
};
template <>
class consuming_buffers<mutable_buffer, mutable_buffer, const mutable_buffer*>
: public consuming_single_buffer<ASIO_MUTABLE_BUFFER>
{
public:
explicit consuming_buffers(const mutable_buffer& buffer)
: consuming_single_buffer<ASIO_MUTABLE_BUFFER>(buffer)
{
}
};
template <>
class consuming_buffers<const_buffer, mutable_buffer, const mutable_buffer*>
: public consuming_single_buffer<ASIO_CONST_BUFFER>
{
public:
explicit consuming_buffers(const mutable_buffer& buffer)
: consuming_single_buffer<ASIO_CONST_BUFFER>(buffer)
{
}
};
template <>
class consuming_buffers<const_buffer, const_buffer, const const_buffer*>
: public consuming_single_buffer<ASIO_CONST_BUFFER>
{
public:
explicit consuming_buffers(const const_buffer& buffer)
: consuming_single_buffer<ASIO_CONST_BUFFER>(buffer)
{
}
};
#if !defined(ASIO_NO_DEPRECATED)
template <>
class consuming_buffers<mutable_buffer,
mutable_buffers_1, const mutable_buffer*>
: public consuming_single_buffer<ASIO_MUTABLE_BUFFER>
{
public:
explicit consuming_buffers(const mutable_buffers_1& buffer)
: consuming_single_buffer<ASIO_MUTABLE_BUFFER>(buffer)
{
}
};
template <>
class consuming_buffers<const_buffer, mutable_buffers_1, const mutable_buffer*>
: public consuming_single_buffer<ASIO_CONST_BUFFER>
{
public:
explicit consuming_buffers(const mutable_buffers_1& buffer)
: consuming_single_buffer<ASIO_CONST_BUFFER>(buffer)
{
}
};
template <>
class consuming_buffers<const_buffer, const_buffers_1, const const_buffer*>
: public consuming_single_buffer<ASIO_CONST_BUFFER>
{
public:
explicit consuming_buffers(const const_buffers_1& buffer)
: consuming_single_buffer<ASIO_CONST_BUFFER>(buffer)
{
}
};
#endif // !defined(ASIO_NO_DEPRECATED)
template <typename Buffer, typename Elem>
class consuming_buffers<Buffer, boost::array<Elem, 2>,
typename boost::array<Elem, 2>::const_iterator>
{
public:
// Construct to represent the entire list of buffers.
explicit consuming_buffers(const boost::array<Elem, 2>& buffers)
: buffers_(buffers),
total_consumed_(0)
{
}
// Determine if we are at the end of the buffers.
bool empty() const
{
return total_consumed_ >=
Buffer(buffers_[0]).size() + Buffer(buffers_[1]).size();
}
// Get the buffer for a single transfer, with a size.
boost::array<Buffer, 2> prepare(std::size_t max_size)
{
boost::array<Buffer, 2> result = {{
Buffer(buffers_[0]), Buffer(buffers_[1]) }};
std::size_t buffer0_size = result[0].size();
result[0] = asio::buffer(result[0] + total_consumed_, max_size);
result[1] = asio::buffer(
result[1] + (total_consumed_ < buffer0_size
? 0 : total_consumed_ - buffer0_size),
max_size - result[0].size());
return result;
}
// Consume the specified number of bytes from the buffers.
void consume(std::size_t size)
{
total_consumed_ += size;
}
// Get the total number of bytes consumed from the buffers.
std::size_t total_consumed() const
{
return total_consumed_;
}
private:
boost::array<Elem, 2> buffers_;
std::size_t total_consumed_;
};
#if defined(ASIO_HAS_STD_ARRAY)
template <typename Buffer, typename Elem>
class consuming_buffers<Buffer, std::array<Elem, 2>,
typename std::array<Elem, 2>::const_iterator>
{
public:
// Construct to represent the entire list of buffers.
explicit consuming_buffers(const std::array<Elem, 2>& buffers)
: buffers_(buffers),
total_consumed_(0)
{
}
// Determine if we are at the end of the buffers.
bool empty() const
{
return total_consumed_ >=
Buffer(buffers_[0]).size() + Buffer(buffers_[1]).size();
}
// Get the buffer for a single transfer, with a size.
std::array<Buffer, 2> prepare(std::size_t max_size)
{
std::array<Buffer, 2> result = {{
Buffer(buffers_[0]), Buffer(buffers_[1]) }};
std::size_t buffer0_size = result[0].size();
result[0] = asio::buffer(result[0] + total_consumed_, max_size);
result[1] = asio::buffer(
result[1] + (total_consumed_ < buffer0_size
? 0 : total_consumed_ - buffer0_size),
max_size - result[0].size());
return result;
}
// Consume the specified number of bytes from the buffers.
void consume(std::size_t size)
{
total_consumed_ += size;
}
// Get the total number of bytes consumed from the buffers.
std::size_t total_consumed() const
{
return total_consumed_;
}
private:
std::array<Elem, 2> buffers_;
std::size_t total_consumed_;
};
#endif // defined(ASIO_HAS_STD_ARRAY)
// Specialisation for null_buffers to ensure that the null_buffers type is
// always passed through to the underlying read or write operation.
template <typename Buffer>
class consuming_buffers<Buffer, null_buffers, const mutable_buffer*>
: public asio::null_buffers
{
public:
consuming_buffers(const null_buffers&)
{
// No-op.
}
bool empty()
{
return false;
}
null_buffers prepare(std::size_t)
{
return null_buffers();
}
void consume(std::size_t)
{
// No-op.
}
std::size_t total_consumed() const
{
return 0;
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_CONSUMING_BUFFERS_HPP

View File

@ -1,31 +0,0 @@
//
// detail/cstddef.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CSTDDEF_HPP
#define ASIO_DETAIL_CSTDDEF_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
namespace asio {
#if defined(ASIO_HAS_NULLPTR)
using std::nullptr_t;
#else // defined(ASIO_HAS_NULLPTR)
struct nullptr_t {};
#endif // defined(ASIO_HAS_NULLPTR)
} // namespace asio
#endif // ASIO_DETAIL_CSTDDEF_HPP

View File

@ -1,60 +0,0 @@
//
// detail/cstdint.hpp
// ~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_CSTDINT_HPP
#define ASIO_DETAIL_CSTDINT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_CSTDINT)
# include <cstdint>
#else // defined(ASIO_HAS_CSTDINT)
# include <boost/cstdint.hpp>
#endif // defined(ASIO_HAS_CSTDINT)
namespace asio {
#if defined(ASIO_HAS_CSTDINT)
using std::int16_t;
using std::int_least16_t;
using std::uint16_t;
using std::uint_least16_t;
using std::int32_t;
using std::int_least32_t;
using std::uint32_t;
using std::uint_least32_t;
using std::int64_t;
using std::int_least64_t;
using std::uint64_t;
using std::uint_least64_t;
using std::uintmax_t;
#else // defined(ASIO_HAS_CSTDINT)
using boost::int16_t;
using boost::int_least16_t;
using boost::uint16_t;
using boost::uint_least16_t;
using boost::int32_t;
using boost::int_least32_t;
using boost::uint32_t;
using boost::uint_least32_t;
using boost::int64_t;
using boost::int_least64_t;
using boost::uint64_t;
using boost::uint_least64_t;
using boost::uintmax_t;
#endif // defined(ASIO_HAS_CSTDINT)
} // namespace asio
#endif // ASIO_DETAIL_CSTDINT_HPP

View File

@ -1,34 +0,0 @@
//
// detail/date_time_fwd.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DATE_TIME_FWD_HPP
#define ASIO_DETAIL_DATE_TIME_FWD_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
namespace boost {
namespace date_time {
template<class T, class TimeSystem>
class base_time;
} // namespace date_time
namespace posix_time {
class ptime;
} // namespace posix_time
} // namespace boost
#endif // ASIO_DETAIL_DATE_TIME_FWD_HPP

View File

@ -1,295 +0,0 @@
//
// detail/deadline_timer_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DEADLINE_TIMER_SERVICE_HPP
#define ASIO_DETAIL_DEADLINE_TIMER_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cstddef>
#include "asio/error.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/timer_queue.hpp"
#include "asio/detail/timer_queue_ptime.hpp"
#include "asio/detail/timer_scheduler.hpp"
#include "asio/detail/wait_handler.hpp"
#include "asio/detail/wait_op.hpp"
#if defined(ASIO_WINDOWS_RUNTIME)
# include <chrono>
# include <thread>
#endif // defined(ASIO_WINDOWS_RUNTIME)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Time_Traits>
class deadline_timer_service
: public execution_context_service_base<deadline_timer_service<Time_Traits> >
{
public:
// The time type.
typedef typename Time_Traits::time_type time_type;
// The duration type.
typedef typename Time_Traits::duration_type duration_type;
// The implementation type of the timer. This type is dependent on the
// underlying implementation of the timer service.
struct implementation_type
: private asio::detail::noncopyable
{
time_type expiry;
bool might_have_pending_waits;
typename timer_queue<Time_Traits>::per_timer_data timer_data;
};
// Constructor.
deadline_timer_service(execution_context& context)
: execution_context_service_base<
deadline_timer_service<Time_Traits> >(context),
scheduler_(asio::use_service<timer_scheduler>(context))
{
scheduler_.init_task();
scheduler_.add_timer_queue(timer_queue_);
}
// Destructor.
~deadline_timer_service()
{
scheduler_.remove_timer_queue(timer_queue_);
}
// Destroy all user-defined handler objects owned by the service.
void shutdown()
{
}
// Construct a new timer implementation.
void construct(implementation_type& impl)
{
impl.expiry = time_type();
impl.might_have_pending_waits = false;
}
// Destroy a timer implementation.
void destroy(implementation_type& impl)
{
asio::error_code ec;
cancel(impl, ec);
}
// Move-construct a new timer implementation.
void move_construct(implementation_type& impl,
implementation_type& other_impl)
{
scheduler_.move_timer(timer_queue_, impl.timer_data, other_impl.timer_data);
impl.expiry = other_impl.expiry;
other_impl.expiry = time_type();
impl.might_have_pending_waits = other_impl.might_have_pending_waits;
other_impl.might_have_pending_waits = false;
}
// Move-assign from another timer implementation.
void move_assign(implementation_type& impl,
deadline_timer_service& other_service,
implementation_type& other_impl)
{
if (this != &other_service)
if (impl.might_have_pending_waits)
scheduler_.cancel_timer(timer_queue_, impl.timer_data);
other_service.scheduler_.move_timer(other_service.timer_queue_,
impl.timer_data, other_impl.timer_data);
impl.expiry = other_impl.expiry;
other_impl.expiry = time_type();
impl.might_have_pending_waits = other_impl.might_have_pending_waits;
other_impl.might_have_pending_waits = false;
}
// Move-construct a new timer implementation.
void converting_move_construct(implementation_type& impl,
deadline_timer_service&, implementation_type& other_impl)
{
move_construct(impl, other_impl);
}
// Move-assign from another timer implementation.
void converting_move_assign(implementation_type& impl,
deadline_timer_service& other_service,
implementation_type& other_impl)
{
move_assign(impl, other_service, other_impl);
}
// Cancel any asynchronous wait operations associated with the timer.
std::size_t cancel(implementation_type& impl, asio::error_code& ec)
{
if (!impl.might_have_pending_waits)
{
ec = asio::error_code();
return 0;
}
ASIO_HANDLER_OPERATION((scheduler_.context(),
"deadline_timer", &impl, 0, "cancel"));
std::size_t count = scheduler_.cancel_timer(timer_queue_, impl.timer_data);
impl.might_have_pending_waits = false;
ec = asio::error_code();
return count;
}
// Cancels one asynchronous wait operation associated with the timer.
std::size_t cancel_one(implementation_type& impl,
asio::error_code& ec)
{
if (!impl.might_have_pending_waits)
{
ec = asio::error_code();
return 0;
}
ASIO_HANDLER_OPERATION((scheduler_.context(),
"deadline_timer", &impl, 0, "cancel_one"));
std::size_t count = scheduler_.cancel_timer(
timer_queue_, impl.timer_data, 1);
if (count == 0)
impl.might_have_pending_waits = false;
ec = asio::error_code();
return count;
}
// Get the expiry time for the timer as an absolute time.
time_type expiry(const implementation_type& impl) const
{
return impl.expiry;
}
// Get the expiry time for the timer as an absolute time.
time_type expires_at(const implementation_type& impl) const
{
return impl.expiry;
}
// Get the expiry time for the timer relative to now.
duration_type expires_from_now(const implementation_type& impl) const
{
return Time_Traits::subtract(this->expiry(impl), Time_Traits::now());
}
// Set the expiry time for the timer as an absolute time.
std::size_t expires_at(implementation_type& impl,
const time_type& expiry_time, asio::error_code& ec)
{
std::size_t count = cancel(impl, ec);
impl.expiry = expiry_time;
ec = asio::error_code();
return count;
}
// Set the expiry time for the timer relative to now.
std::size_t expires_after(implementation_type& impl,
const duration_type& expiry_time, asio::error_code& ec)
{
return expires_at(impl,
Time_Traits::add(Time_Traits::now(), expiry_time), ec);
}
// Set the expiry time for the timer relative to now.
std::size_t expires_from_now(implementation_type& impl,
const duration_type& expiry_time, asio::error_code& ec)
{
return expires_at(impl,
Time_Traits::add(Time_Traits::now(), expiry_time), ec);
}
// Perform a blocking wait on the timer.
void wait(implementation_type& impl, asio::error_code& ec)
{
time_type now = Time_Traits::now();
ec = asio::error_code();
while (Time_Traits::less_than(now, impl.expiry) && !ec)
{
this->do_wait(Time_Traits::to_posix_duration(
Time_Traits::subtract(impl.expiry, now)), ec);
now = Time_Traits::now();
}
}
// Start an asynchronous wait on the timer.
template <typename Handler, typename IoExecutor>
void async_wait(implementation_type& impl,
Handler& handler, const IoExecutor& io_ex)
{
// Allocate and construct an operation to wrap the handler.
typedef wait_handler<Handler, IoExecutor> op;
typename op::ptr p = { asio::detail::addressof(handler),
op::ptr::allocate(handler), 0 };
p.p = new (p.v) op(handler, io_ex);
impl.might_have_pending_waits = true;
ASIO_HANDLER_CREATION((scheduler_.context(),
*p.p, "deadline_timer", &impl, 0, "async_wait"));
scheduler_.schedule_timer(timer_queue_, impl.expiry, impl.timer_data, p.p);
p.v = p.p = 0;
}
private:
// Helper function to wait given a duration type. The duration type should
// either be of type boost::posix_time::time_duration, or implement the
// required subset of its interface.
template <typename Duration>
void do_wait(const Duration& timeout, asio::error_code& ec)
{
#if defined(ASIO_WINDOWS_RUNTIME)
std::this_thread::sleep_for(
std::chrono::seconds(timeout.total_seconds())
+ std::chrono::microseconds(timeout.total_microseconds()));
ec = asio::error_code();
#else // defined(ASIO_WINDOWS_RUNTIME)
::timeval tv;
tv.tv_sec = timeout.total_seconds();
tv.tv_usec = timeout.total_microseconds() % 1000000;
socket_ops::select(0, 0, 0, 0, &tv, ec);
#endif // defined(ASIO_WINDOWS_RUNTIME)
}
// The queue of timers.
timer_queue<Time_Traits> timer_queue_;
// The object that schedules and executes timers. Usually a reactor.
timer_scheduler& scheduler_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_DEADLINE_TIMER_SERVICE_HPP

View File

@ -1,36 +0,0 @@
//
// detail/dependent_type.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DEPENDENT_TYPE_HPP
#define ASIO_DETAIL_DEPENDENT_TYPE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename DependsOn, typename T>
struct dependent_type
{
typedef T type;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_DEPENDENT_TYPE_HPP

View File

@ -1,139 +0,0 @@
//
// detail/descriptor_ops.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DESCRIPTOR_OPS_HPP
#define ASIO_DETAIL_DESCRIPTOR_OPS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_WINDOWS) \
&& !defined(ASIO_WINDOWS_RUNTIME) \
&& !defined(__CYGWIN__)
#include <cstddef>
#include "asio/error.hpp"
#include "asio/error_code.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
namespace descriptor_ops {
// Descriptor state bits.
enum
{
// The user wants a non-blocking descriptor.
user_set_non_blocking = 1,
// The descriptor has been set non-blocking.
internal_non_blocking = 2,
// Helper "state" used to determine whether the descriptor is non-blocking.
non_blocking = user_set_non_blocking | internal_non_blocking,
// The descriptor may have been dup()-ed.
possible_dup = 4
};
typedef unsigned char state_type;
inline void get_last_error(
asio::error_code& ec, bool is_error_condition)
{
if (!is_error_condition)
{
ec.assign(0, ec.category());
}
else
{
ec = asio::error_code(errno,
asio::error::get_system_category());
}
}
ASIO_DECL int open(const char* path, int flags,
asio::error_code& ec);
ASIO_DECL int close(int d, state_type& state,
asio::error_code& ec);
ASIO_DECL bool set_user_non_blocking(int d,
state_type& state, bool value, asio::error_code& ec);
ASIO_DECL bool set_internal_non_blocking(int d,
state_type& state, bool value, asio::error_code& ec);
typedef iovec buf;
ASIO_DECL std::size_t sync_read(int d, state_type state, buf* bufs,
std::size_t count, bool all_empty, asio::error_code& ec);
ASIO_DECL std::size_t sync_read1(int d, state_type state, void* data,
std::size_t size, asio::error_code& ec);
ASIO_DECL bool non_blocking_read(int d, buf* bufs, std::size_t count,
asio::error_code& ec, std::size_t& bytes_transferred);
ASIO_DECL bool non_blocking_read1(int d, void* data, std::size_t size,
asio::error_code& ec, std::size_t& bytes_transferred);
ASIO_DECL std::size_t sync_write(int d, state_type state,
const buf* bufs, std::size_t count, bool all_empty,
asio::error_code& ec);
ASIO_DECL std::size_t sync_write1(int d, state_type state,
const void* data, std::size_t size, asio::error_code& ec);
ASIO_DECL bool non_blocking_write(int d,
const buf* bufs, std::size_t count,
asio::error_code& ec, std::size_t& bytes_transferred);
ASIO_DECL bool non_blocking_write1(int d,
const void* data, std::size_t size,
asio::error_code& ec, std::size_t& bytes_transferred);
ASIO_DECL int ioctl(int d, state_type& state, long cmd,
ioctl_arg_type* arg, asio::error_code& ec);
ASIO_DECL int fcntl(int d, int cmd, asio::error_code& ec);
ASIO_DECL int fcntl(int d, int cmd,
long arg, asio::error_code& ec);
ASIO_DECL int poll_read(int d,
state_type state, asio::error_code& ec);
ASIO_DECL int poll_write(int d,
state_type state, asio::error_code& ec);
ASIO_DECL int poll_error(int d,
state_type state, asio::error_code& ec);
} // namespace descriptor_ops
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/descriptor_ops.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // !defined(ASIO_WINDOWS)
// && !defined(ASIO_WINDOWS_RUNTIME)
// && !defined(__CYGWIN__)
#endif // ASIO_DETAIL_DESCRIPTOR_OPS_HPP

View File

@ -1,148 +0,0 @@
//
// detail/descriptor_read_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DESCRIPTOR_READ_OP_HPP
#define ASIO_DETAIL_DESCRIPTOR_READ_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_WINDOWS) && !defined(__CYGWIN__)
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/descriptor_ops.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename MutableBufferSequence>
class descriptor_read_op_base : public reactor_op
{
public:
descriptor_read_op_base(const asio::error_code& success_ec,
int descriptor, const MutableBufferSequence& buffers,
func_type complete_func)
: reactor_op(success_ec,
&descriptor_read_op_base::do_perform, complete_func),
descriptor_(descriptor),
buffers_(buffers)
{
}
static status do_perform(reactor_op* base)
{
descriptor_read_op_base* o(static_cast<descriptor_read_op_base*>(base));
typedef buffer_sequence_adapter<asio::mutable_buffer,
MutableBufferSequence> bufs_type;
status result;
if (bufs_type::is_single_buffer)
{
result = descriptor_ops::non_blocking_read1(o->descriptor_,
bufs_type::first(o->buffers_).data(),
bufs_type::first(o->buffers_).size(),
o->ec_, o->bytes_transferred_) ? done : not_done;
}
else
{
bufs_type bufs(o->buffers_);
result = descriptor_ops::non_blocking_read(o->descriptor_,
bufs.buffers(), bufs.count(), o->ec_, o->bytes_transferred_)
? done : not_done;
}
ASIO_HANDLER_REACTOR_OPERATION((*o, "non_blocking_read",
o->ec_, o->bytes_transferred_));
return result;
}
private:
int descriptor_;
MutableBufferSequence buffers_;
};
template <typename MutableBufferSequence, typename Handler, typename IoExecutor>
class descriptor_read_op
: public descriptor_read_op_base<MutableBufferSequence>
{
public:
ASIO_DEFINE_HANDLER_PTR(descriptor_read_op);
descriptor_read_op(const asio::error_code& success_ec,
int descriptor, const MutableBufferSequence& buffers,
Handler& handler, const IoExecutor& io_ex)
: descriptor_read_op_base<MutableBufferSequence>(success_ec,
descriptor, buffers, &descriptor_read_op::do_complete),
handler_(ASIO_MOVE_CAST(Handler)(handler)),
work_(handler_, io_ex)
{
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
descriptor_read_op* o(static_cast<descriptor_read_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
ASIO_MOVE_CAST2(handler_work<Handler, IoExecutor>)(
o->work_));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder2<Handler, asio::error_code, std::size_t>
handler(o->handler_, o->ec_, o->bytes_transferred_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, handler.arg2_));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_WINDOWS) && !defined(__CYGWIN__)
#endif // ASIO_DETAIL_DESCRIPTOR_READ_OP_HPP

View File

@ -1,148 +0,0 @@
//
// detail/descriptor_write_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DESCRIPTOR_WRITE_OP_HPP
#define ASIO_DETAIL_DESCRIPTOR_WRITE_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_WINDOWS) && !defined(__CYGWIN__)
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/descriptor_ops.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_work.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename ConstBufferSequence>
class descriptor_write_op_base : public reactor_op
{
public:
descriptor_write_op_base(const asio::error_code& success_ec,
int descriptor, const ConstBufferSequence& buffers,
func_type complete_func)
: reactor_op(success_ec,
&descriptor_write_op_base::do_perform, complete_func),
descriptor_(descriptor),
buffers_(buffers)
{
}
static status do_perform(reactor_op* base)
{
descriptor_write_op_base* o(static_cast<descriptor_write_op_base*>(base));
typedef buffer_sequence_adapter<asio::const_buffer,
ConstBufferSequence> bufs_type;
status result;
if (bufs_type::is_single_buffer)
{
result = descriptor_ops::non_blocking_write1(o->descriptor_,
bufs_type::first(o->buffers_).data(),
bufs_type::first(o->buffers_).size(),
o->ec_, o->bytes_transferred_) ? done : not_done;
}
else
{
bufs_type bufs(o->buffers_);
result = descriptor_ops::non_blocking_write(o->descriptor_,
bufs.buffers(), bufs.count(), o->ec_, o->bytes_transferred_)
? done : not_done;
}
ASIO_HANDLER_REACTOR_OPERATION((*o, "non_blocking_write",
o->ec_, o->bytes_transferred_));
return result;
}
private:
int descriptor_;
ConstBufferSequence buffers_;
};
template <typename ConstBufferSequence, typename Handler, typename IoExecutor>
class descriptor_write_op
: public descriptor_write_op_base<ConstBufferSequence>
{
public:
ASIO_DEFINE_HANDLER_PTR(descriptor_write_op);
descriptor_write_op(const asio::error_code& success_ec,
int descriptor, const ConstBufferSequence& buffers,
Handler& handler, const IoExecutor& io_ex)
: descriptor_write_op_base<ConstBufferSequence>(success_ec,
descriptor, buffers, &descriptor_write_op::do_complete),
handler_(ASIO_MOVE_CAST(Handler)(handler)),
work_(handler_, io_ex)
{
}
static void do_complete(void* owner, operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
descriptor_write_op* o(static_cast<descriptor_write_op*>(base));
ptr p = { asio::detail::addressof(o->handler_), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Take ownership of the operation's outstanding work.
handler_work<Handler, IoExecutor> w(
ASIO_MOVE_CAST2(handler_work<Handler, IoExecutor>)(
o->work_));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
detail::binder2<Handler, asio::error_code, std::size_t>
handler(o->handler_, o->ec_, o->bytes_transferred_);
p.h = asio::detail::addressof(handler.handler_);
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN((handler.arg1_, handler.arg2_));
w.complete(handler, handler.handler_);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
handler_work<Handler, IoExecutor> work_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_WINDOWS) && !defined(__CYGWIN__)
#endif // ASIO_DETAIL_DESCRIPTOR_WRITE_OP_HPP

View File

@ -1,218 +0,0 @@
//
// detail/dev_poll_reactor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_DEV_POLL_REACTOR_HPP
#define ASIO_DETAIL_DEV_POLL_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_DEV_POLL)
#include <cstddef>
#include <vector>
#include <sys/devpoll.h>
#include "asio/detail/hash_map.hpp"
#include "asio/detail/limits.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/op_queue.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/reactor_op_queue.hpp"
#include "asio/detail/select_interrupter.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/timer_queue_base.hpp"
#include "asio/detail/timer_queue_set.hpp"
#include "asio/detail/wait_op.hpp"
#include "asio/execution_context.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class dev_poll_reactor
: public execution_context_service_base<dev_poll_reactor>
{
public:
enum op_types { read_op = 0, write_op = 1,
connect_op = 1, except_op = 2, max_ops = 3 };
// Per-descriptor data.
struct per_descriptor_data
{
};
// Constructor.
ASIO_DECL dev_poll_reactor(asio::execution_context& ctx);
// Destructor.
ASIO_DECL ~dev_poll_reactor();
// Destroy all user-defined handler objects owned by the service.
ASIO_DECL void shutdown();
// Recreate internal descriptors following a fork.
ASIO_DECL void notify_fork(
asio::execution_context::fork_event fork_ev);
// Initialise the task.
ASIO_DECL void init_task();
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
ASIO_DECL int register_descriptor(socket_type, per_descriptor_data&);
// Register a descriptor with an associated single operation. Returns 0 on
// success, system error code on failure.
ASIO_DECL int register_internal_descriptor(
int op_type, socket_type descriptor,
per_descriptor_data& descriptor_data, reactor_op* op);
// Move descriptor registration from one descriptor_data object to another.
ASIO_DECL void move_descriptor(socket_type descriptor,
per_descriptor_data& target_descriptor_data,
per_descriptor_data& source_descriptor_data);
// Post a reactor operation for immediate completion.
void post_immediate_completion(reactor_op* op, bool is_continuation)
{
scheduler_.post_immediate_completion(op, is_continuation);
}
// Start a new operation. The reactor operation will be performed when the
// given descriptor is flagged as ready, or an error has occurred.
ASIO_DECL void start_op(int op_type, socket_type descriptor,
per_descriptor_data&, reactor_op* op,
bool is_continuation, bool allow_speculative);
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
ASIO_DECL void cancel_ops(socket_type descriptor, per_descriptor_data&);
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor. The reactor resources associated with
// the descriptor must be released by calling cleanup_descriptor_data.
ASIO_DECL void deregister_descriptor(socket_type descriptor,
per_descriptor_data&, bool closing);
// Remove the descriptor's registration from the reactor. The reactor
// resources associated with the descriptor must be released by calling
// cleanup_descriptor_data.
ASIO_DECL void deregister_internal_descriptor(
socket_type descriptor, per_descriptor_data&);
// Perform any post-deregistration cleanup tasks associated with the
// descriptor data.
ASIO_DECL void cleanup_descriptor_data(per_descriptor_data&);
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& queue);
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& queue);
// Schedule a new operation in the given timer queue to expire at the
// specified absolute time.
template <typename Time_Traits>
void schedule_timer(timer_queue<Time_Traits>& queue,
const typename Time_Traits::time_type& time,
typename timer_queue<Time_Traits>::per_timer_data& timer, wait_op* op);
// Cancel the timer operations associated with the given token. Returns the
// number of operations that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& timer,
std::size_t max_cancelled = (std::numeric_limits<std::size_t>::max)());
// Move the timer operations associated with the given timer.
template <typename Time_Traits>
void move_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& target,
typename timer_queue<Time_Traits>::per_timer_data& source);
// Run /dev/poll once until interrupted or events are ready to be dispatched.
ASIO_DECL void run(long usec, op_queue<operation>& ops);
// Interrupt the select loop.
ASIO_DECL void interrupt();
private:
// Create the /dev/poll file descriptor. Throws an exception if the descriptor
// cannot be created.
ASIO_DECL static int do_dev_poll_create();
// Helper function to add a new timer queue.
ASIO_DECL void do_add_timer_queue(timer_queue_base& queue);
// Helper function to remove a timer queue.
ASIO_DECL void do_remove_timer_queue(timer_queue_base& queue);
// Get the timeout value for the /dev/poll DP_POLL operation. The timeout
// value is returned as a number of milliseconds. A return value of -1
// indicates that the poll should block indefinitely.
ASIO_DECL int get_timeout(int msec);
// Cancel all operations associated with the given descriptor. The do_cancel
// function of the handler objects will be invoked. This function does not
// acquire the dev_poll_reactor's mutex.
ASIO_DECL void cancel_ops_unlocked(socket_type descriptor,
const asio::error_code& ec);
// Add a pending event entry for the given descriptor.
ASIO_DECL ::pollfd& add_pending_event_change(int descriptor);
// The scheduler implementation used to post completions.
scheduler& scheduler_;
// Mutex to protect access to internal data.
asio::detail::mutex mutex_;
// The /dev/poll file descriptor.
int dev_poll_fd_;
// Vector of /dev/poll events waiting to be written to the descriptor.
std::vector< ::pollfd> pending_event_changes_;
// Hash map to associate a descriptor with a pending event change index.
hash_map<int, std::size_t> pending_event_change_index_;
// The interrupter is used to break a blocking DP_POLL operation.
select_interrupter interrupter_;
// The queues of read, write and except operations.
reactor_op_queue<socket_type> op_queue_[max_ops];
// The timer queues.
timer_queue_set timer_queues_;
// Whether the service has been shut down.
bool shutdown_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/detail/impl/dev_poll_reactor.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/dev_poll_reactor.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // defined(ASIO_HAS_DEV_POLL)
#endif // ASIO_DETAIL_DEV_POLL_REACTOR_HPP

View File

@ -1,266 +0,0 @@
//
// detail/epoll_reactor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_EPOLL_REACTOR_HPP
#define ASIO_DETAIL_EPOLL_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_EPOLL)
#include "asio/detail/atomic_count.hpp"
#include "asio/detail/conditionally_enabled_mutex.hpp"
#include "asio/detail/limits.hpp"
#include "asio/detail/object_pool.hpp"
#include "asio/detail/op_queue.hpp"
#include "asio/detail/reactor_op.hpp"
#include "asio/detail/select_interrupter.hpp"
#include "asio/detail/socket_types.hpp"
#include "asio/detail/timer_queue_base.hpp"
#include "asio/detail/timer_queue_set.hpp"
#include "asio/detail/wait_op.hpp"
#include "asio/execution_context.hpp"
#if defined(ASIO_HAS_TIMERFD)
# include <sys/timerfd.h>
#endif // defined(ASIO_HAS_TIMERFD)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class epoll_reactor
: public execution_context_service_base<epoll_reactor>
{
private:
// The mutex type used by this reactor.
typedef conditionally_enabled_mutex mutex;
public:
enum op_types { read_op = 0, write_op = 1,
connect_op = 1, except_op = 2, max_ops = 3 };
// Per-descriptor queues.
class descriptor_state : operation
{
friend class epoll_reactor;
friend class object_pool_access;
descriptor_state* next_;
descriptor_state* prev_;
mutex mutex_;
epoll_reactor* reactor_;
int descriptor_;
uint32_t registered_events_;
op_queue<reactor_op> op_queue_[max_ops];
bool try_speculative_[max_ops];
bool shutdown_;
ASIO_DECL descriptor_state(bool locking);
void set_ready_events(uint32_t events) { task_result_ = events; }
void add_ready_events(uint32_t events) { task_result_ |= events; }
ASIO_DECL operation* perform_io(uint32_t events);
ASIO_DECL static void do_complete(
void* owner, operation* base,
const asio::error_code& ec, std::size_t bytes_transferred);
};
// Per-descriptor data.
typedef descriptor_state* per_descriptor_data;
// Constructor.
ASIO_DECL epoll_reactor(asio::execution_context& ctx);
// Destructor.
ASIO_DECL ~epoll_reactor();
// Destroy all user-defined handler objects owned by the service.
ASIO_DECL void shutdown();
// Recreate internal descriptors following a fork.
ASIO_DECL void notify_fork(
asio::execution_context::fork_event fork_ev);
// Initialise the task.
ASIO_DECL void init_task();
// Register a socket with the reactor. Returns 0 on success, system error
// code on failure.
ASIO_DECL int register_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data);
// Register a descriptor with an associated single operation. Returns 0 on
// success, system error code on failure.
ASIO_DECL int register_internal_descriptor(
int op_type, socket_type descriptor,
per_descriptor_data& descriptor_data, reactor_op* op);
// Move descriptor registration from one descriptor_data object to another.
ASIO_DECL void move_descriptor(socket_type descriptor,
per_descriptor_data& target_descriptor_data,
per_descriptor_data& source_descriptor_data);
// Post a reactor operation for immediate completion.
void post_immediate_completion(reactor_op* op, bool is_continuation)
{
scheduler_.post_immediate_completion(op, is_continuation);
}
// Start a new operation. The reactor operation will be performed when the
// given descriptor is flagged as ready, or an error has occurred.
ASIO_DECL void start_op(int op_type, socket_type descriptor,
per_descriptor_data& descriptor_data, reactor_op* op,
bool is_continuation, bool allow_speculative);
// Cancel all operations associated with the given descriptor. The
// handlers associated with the descriptor will be invoked with the
// operation_aborted error.
ASIO_DECL void cancel_ops(socket_type descriptor,
per_descriptor_data& descriptor_data);
// Cancel any operations that are running against the descriptor and remove
// its registration from the reactor. The reactor resources associated with
// the descriptor must be released by calling cleanup_descriptor_data.
ASIO_DECL void deregister_descriptor(socket_type descriptor,
per_descriptor_data& descriptor_data, bool closing);
// Remove the descriptor's registration from the reactor. The reactor
// resources associated with the descriptor must be released by calling
// cleanup_descriptor_data.
ASIO_DECL void deregister_internal_descriptor(
socket_type descriptor, per_descriptor_data& descriptor_data);
// Perform any post-deregistration cleanup tasks associated with the
// descriptor data.
ASIO_DECL void cleanup_descriptor_data(
per_descriptor_data& descriptor_data);
// Add a new timer queue to the reactor.
template <typename Time_Traits>
void add_timer_queue(timer_queue<Time_Traits>& timer_queue);
// Remove a timer queue from the reactor.
template <typename Time_Traits>
void remove_timer_queue(timer_queue<Time_Traits>& timer_queue);
// Schedule a new operation in the given timer queue to expire at the
// specified absolute time.
template <typename Time_Traits>
void schedule_timer(timer_queue<Time_Traits>& queue,
const typename Time_Traits::time_type& time,
typename timer_queue<Time_Traits>::per_timer_data& timer, wait_op* op);
// Cancel the timer operations associated with the given token. Returns the
// number of operations that have been posted or dispatched.
template <typename Time_Traits>
std::size_t cancel_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& timer,
std::size_t max_cancelled = (std::numeric_limits<std::size_t>::max)());
// Move the timer operations associated with the given timer.
template <typename Time_Traits>
void move_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& target,
typename timer_queue<Time_Traits>::per_timer_data& source);
// Run epoll once until interrupted or events are ready to be dispatched.
ASIO_DECL void run(long usec, op_queue<operation>& ops);
// Interrupt the select loop.
ASIO_DECL void interrupt();
private:
// The hint to pass to epoll_create to size its data structures.
enum { epoll_size = 20000 };
// Create the epoll file descriptor. Throws an exception if the descriptor
// cannot be created.
ASIO_DECL static int do_epoll_create();
// Create the timerfd file descriptor. Does not throw.
ASIO_DECL static int do_timerfd_create();
// Allocate a new descriptor state object.
ASIO_DECL descriptor_state* allocate_descriptor_state();
// Free an existing descriptor state object.
ASIO_DECL void free_descriptor_state(descriptor_state* s);
// Helper function to add a new timer queue.
ASIO_DECL void do_add_timer_queue(timer_queue_base& queue);
// Helper function to remove a timer queue.
ASIO_DECL void do_remove_timer_queue(timer_queue_base& queue);
// Called to recalculate and update the timeout.
ASIO_DECL void update_timeout();
// Get the timeout value for the epoll_wait call. The timeout value is
// returned as a number of milliseconds. A return value of -1 indicates
// that epoll_wait should block indefinitely.
ASIO_DECL int get_timeout(int msec);
#if defined(ASIO_HAS_TIMERFD)
// Get the timeout value for the timer descriptor. The return value is the
// flag argument to be used when calling timerfd_settime.
ASIO_DECL int get_timeout(itimerspec& ts);
#endif // defined(ASIO_HAS_TIMERFD)
// The scheduler implementation used to post completions.
scheduler& scheduler_;
// Mutex to protect access to internal data.
mutex mutex_;
// The interrupter is used to break a blocking epoll_wait call.
select_interrupter interrupter_;
// The epoll file descriptor.
int epoll_fd_;
// The timer file descriptor.
int timer_fd_;
// The timer queues.
timer_queue_set timer_queues_;
// Whether the service has been shut down.
bool shutdown_;
// Mutex to protect access to the registered descriptors.
mutex registered_descriptors_mutex_;
// Keep track of all registered descriptors.
object_pool<descriptor_state> registered_descriptors_;
// Helper class to do post-perform_io cleanup.
struct perform_io_cleanup_on_block_exit;
friend struct perform_io_cleanup_on_block_exit;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#include "asio/detail/impl/epoll_reactor.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/epoll_reactor.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // defined(ASIO_HAS_EPOLL)
#endif // ASIO_DETAIL_EPOLL_REACTOR_HPP

View File

@ -1,48 +0,0 @@
//
// detail/event.hpp
// ~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_EVENT_HPP
#define ASIO_DETAIL_EVENT_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_THREADS)
# include "asio/detail/null_event.hpp"
#elif defined(ASIO_WINDOWS)
# include "asio/detail/win_event.hpp"
#elif defined(ASIO_HAS_PTHREADS)
# include "asio/detail/posix_event.hpp"
#elif defined(ASIO_HAS_STD_MUTEX_AND_CONDVAR)
# include "asio/detail/std_event.hpp"
#else
# error Only Windows, POSIX and std::condition_variable are supported!
#endif
namespace asio {
namespace detail {
#if !defined(ASIO_HAS_THREADS)
typedef null_event event;
#elif defined(ASIO_WINDOWS)
typedef win_event event;
#elif defined(ASIO_HAS_PTHREADS)
typedef posix_event event;
#elif defined(ASIO_HAS_STD_MUTEX_AND_CONDVAR)
typedef std_event event;
#endif
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_EVENT_HPP

View File

@ -1,83 +0,0 @@
//
// detail/eventfd_select_interrupter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Roelof Naude (roelof.naude at gmail dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_EVENTFD_SELECT_INTERRUPTER_HPP
#define ASIO_DETAIL_EVENTFD_SELECT_INTERRUPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_EVENTFD)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class eventfd_select_interrupter
{
public:
// Constructor.
ASIO_DECL eventfd_select_interrupter();
// Destructor.
ASIO_DECL ~eventfd_select_interrupter();
// Recreate the interrupter's descriptors. Used after a fork.
ASIO_DECL void recreate();
// Interrupt the select call.
ASIO_DECL void interrupt();
// Reset the select interrupter. Returns true if the reset was successful.
ASIO_DECL bool reset();
// Get the read descriptor to be passed to select.
int read_descriptor() const
{
return read_descriptor_;
}
private:
// Open the descriptors. Throws on error.
ASIO_DECL void open_descriptors();
// Close the descriptors.
ASIO_DECL void close_descriptors();
// The read end of a connection used to interrupt the select call. This file
// descriptor is passed to select such that when it is time to stop, a single
// 64bit value will be written on the other end of the connection and this
// descriptor will become readable.
int read_descriptor_;
// The write end of a connection used to interrupt the select call. A single
// 64bit non-zero value may be written to this to wake up the select which is
// waiting for the other end to become readable. This descriptor will only
// differ from the read descriptor when a pipe is used.
int write_descriptor_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/eventfd_select_interrupter.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // defined(ASIO_HAS_EVENTFD)
#endif // ASIO_DETAIL_EVENTFD_SELECT_INTERRUPTER_HPP

View File

@ -1,204 +0,0 @@
//
// detail/executor_function.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_EXECUTOR_FUNCTION_HPP
#define ASIO_DETAIL_EXECUTOR_FUNCTION_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
#if defined(ASIO_HAS_MOVE)
// Lightweight, move-only function object wrapper.
class executor_function
{
public:
template <typename F, typename Alloc>
explicit executor_function(F f, const Alloc& a)
{
// Allocate and construct an object to wrap the function.
typedef impl<F, Alloc> impl_type;
typename impl_type::ptr p = {
detail::addressof(a), impl_type::ptr::allocate(a), 0 };
impl_ = new (p.v) impl_type(ASIO_MOVE_CAST(F)(f), a);
p.v = 0;
}
executor_function(executor_function&& other) ASIO_NOEXCEPT
: impl_(other.impl_)
{
other.impl_ = 0;
}
~executor_function()
{
if (impl_)
impl_->complete_(impl_, false);
}
void operator()()
{
if (impl_)
{
impl_base* i = impl_;
impl_ = 0;
i->complete_(i, true);
}
}
private:
// Base class for polymorphic function implementations.
struct impl_base
{
void (*complete_)(impl_base*, bool);
};
// Polymorphic function implementation.
template <typename Function, typename Alloc>
struct impl : impl_base
{
ASIO_DEFINE_TAGGED_HANDLER_ALLOCATOR_PTR(
thread_info_base::executor_function_tag, impl);
template <typename F>
impl(ASIO_MOVE_ARG(F) f, const Alloc& a)
: function_(ASIO_MOVE_CAST(F)(f)),
allocator_(a)
{
complete_ = &executor_function::complete<Function, Alloc>;
}
Function function_;
Alloc allocator_;
};
// Helper to complete function invocation.
template <typename Function, typename Alloc>
static void complete(impl_base* base, bool call)
{
// Take ownership of the function object.
impl<Function, Alloc>* i(static_cast<impl<Function, Alloc>*>(base));
Alloc allocator(i->allocator_);
typename impl<Function, Alloc>::ptr p = {
detail::addressof(allocator), i, i };
// Make a copy of the function so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the function may be the true owner of the memory
// associated with the function. Consequently, a local copy of the function
// is required to ensure that any owning sub-object remains valid until
// after we have deallocated the memory here.
Function function(ASIO_MOVE_CAST(Function)(i->function_));
p.reset();
// Make the upcall if required.
if (call)
{
asio_handler_invoke_helpers::invoke(function, function);
}
}
impl_base* impl_;
};
#else // defined(ASIO_HAS_MOVE)
// Not so lightweight, copyable function object wrapper.
class executor_function
{
public:
template <typename F, typename Alloc>
explicit executor_function(const F& f, const Alloc&)
: impl_(new impl<typename decay<F>::type>(f))
{
}
void operator()()
{
impl_->complete_(impl_.get());
}
private:
// Base class for polymorphic function implementations.
struct impl_base
{
void (*complete_)(impl_base*);
};
// Polymorphic function implementation.
template <typename F>
struct impl : impl_base
{
impl(const F& f)
: function_(f)
{
complete_ = &executor_function::complete<F>;
}
F function_;
};
// Helper to complete function invocation.
template <typename F>
static void complete(impl_base* i)
{
static_cast<impl<F>*>(i)->function_();
}
shared_ptr<impl_base> impl_;
};
#endif // defined(ASIO_HAS_MOVE)
// Lightweight, non-owning, copyable function object wrapper.
class executor_function_view
{
public:
template <typename F>
explicit executor_function_view(F& f) ASIO_NOEXCEPT
: complete_(&executor_function_view::complete<F>),
function_(&f)
{
}
void operator()()
{
complete_(function_);
}
private:
// Helper to complete function invocation.
template <typename F>
static void complete(void* f)
{
(*static_cast<F*>(f))();
}
void (*complete_)(void*);
void* function_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_EXECUTOR_FUNCTION_HPP

View File

@ -1,84 +0,0 @@
//
// detail/executor_op.hpp
// ~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_EXECUTOR_OP_HPP
#define ASIO_DETAIL_EXECUTOR_OP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/fenced_block.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/scheduler_operation.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Handler, typename Alloc,
typename Operation = scheduler_operation>
class executor_op : public Operation
{
public:
ASIO_DEFINE_HANDLER_ALLOCATOR_PTR(executor_op);
template <typename H>
executor_op(ASIO_MOVE_ARG(H) h, const Alloc& allocator)
: Operation(&executor_op::do_complete),
handler_(ASIO_MOVE_CAST(H)(h)),
allocator_(allocator)
{
}
static void do_complete(void* owner, Operation* base,
const asio::error_code& /*ec*/,
std::size_t /*bytes_transferred*/)
{
// Take ownership of the handler object.
executor_op* o(static_cast<executor_op*>(base));
Alloc allocator(o->allocator_);
ptr p = { detail::addressof(allocator), o, o };
ASIO_HANDLER_COMPLETION((*o));
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made. Even if we're not about to make an upcall, a
// sub-object of the handler may be the true owner of the memory associated
// with the handler. Consequently, a local copy of the handler is required
// to ensure that any owning sub-object remains valid until after we have
// deallocated the memory here.
Handler handler(ASIO_MOVE_CAST(Handler)(o->handler_));
p.reset();
// Make the upcall if required.
if (owner)
{
fenced_block b(fenced_block::half);
ASIO_HANDLER_INVOCATION_BEGIN(());
asio_handler_invoke_helpers::invoke(handler, handler);
ASIO_HANDLER_INVOCATION_END;
}
}
private:
Handler handler_;
Alloc allocator_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_EXECUTOR_OP_HPP

View File

@ -1,39 +0,0 @@
//
// detail/fd_set_adapter.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_FD_SET_ADAPTER_HPP
#define ASIO_DETAIL_FD_SET_ADAPTER_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_WINDOWS_RUNTIME)
#include "asio/detail/posix_fd_set_adapter.hpp"
#include "asio/detail/win_fd_set_adapter.hpp"
namespace asio {
namespace detail {
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
typedef win_fd_set_adapter fd_set_adapter;
#else
typedef posix_fd_set_adapter fd_set_adapter;
#endif
} // namespace detail
} // namespace asio
#endif // !defined(ASIO_WINDOWS_RUNTIME)
#endif // ASIO_DETAIL_FD_SET_ADAPTER_HPP

View File

@ -1,80 +0,0 @@
//
// detail/fenced_block.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_FENCED_BLOCK_HPP
#define ASIO_DETAIL_FENCED_BLOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_THREADS) \
|| defined(ASIO_DISABLE_FENCED_BLOCK)
# include "asio/detail/null_fenced_block.hpp"
#elif defined(ASIO_HAS_STD_ATOMIC)
# include "asio/detail/std_fenced_block.hpp"
#elif defined(__MACH__) && defined(__APPLE__)
# include "asio/detail/macos_fenced_block.hpp"
#elif defined(__sun)
# include "asio/detail/solaris_fenced_block.hpp"
#elif defined(__GNUC__) && defined(__arm__) \
&& !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
# include "asio/detail/gcc_arm_fenced_block.hpp"
#elif defined(__GNUC__) && (defined(__hppa) || defined(__hppa__))
# include "asio/detail/gcc_hppa_fenced_block.hpp"
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
# include "asio/detail/gcc_x86_fenced_block.hpp"
#elif defined(__GNUC__) \
&& ((__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)) \
&& !defined(__INTEL_COMPILER) && !defined(__ICL) \
&& !defined(__ICC) && !defined(__ECC) && !defined(__PATHSCALE__)
# include "asio/detail/gcc_sync_fenced_block.hpp"
#elif defined(ASIO_WINDOWS) && !defined(UNDER_CE)
# include "asio/detail/win_fenced_block.hpp"
#else
# include "asio/detail/null_fenced_block.hpp"
#endif
namespace asio {
namespace detail {
#if !defined(ASIO_HAS_THREADS) \
|| defined(ASIO_DISABLE_FENCED_BLOCK)
typedef null_fenced_block fenced_block;
#elif defined(ASIO_HAS_STD_ATOMIC)
typedef std_fenced_block fenced_block;
#elif defined(__MACH__) && defined(__APPLE__)
typedef macos_fenced_block fenced_block;
#elif defined(__sun)
typedef solaris_fenced_block fenced_block;
#elif defined(__GNUC__) && defined(__arm__) \
&& !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
typedef gcc_arm_fenced_block fenced_block;
#elif defined(__GNUC__) && (defined(__hppa) || defined(__hppa__))
typedef gcc_hppa_fenced_block fenced_block;
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
typedef gcc_x86_fenced_block fenced_block;
#elif defined(__GNUC__) \
&& ((__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)) \
&& !defined(__INTEL_COMPILER) && !defined(__ICL) \
&& !defined(__ICC) && !defined(__ECC) && !defined(__PATHSCALE__)
typedef gcc_sync_fenced_block fenced_block;
#elif defined(ASIO_WINDOWS) && !defined(UNDER_CE)
typedef win_fenced_block fenced_block;
#else
typedef null_fenced_block fenced_block;
#endif
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_FENCED_BLOCK_HPP

View File

@ -1,38 +0,0 @@
//
// detail/functional.hpp
// ~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_FUNCTIONAL_HPP
#define ASIO_DETAIL_FUNCTIONAL_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <functional>
#if !defined(ASIO_HAS_STD_FUNCTION)
# include <boost/function.hpp>
#endif // !defined(ASIO_HAS_STD_FUNCTION)
namespace asio {
namespace detail {
#if defined(ASIO_HAS_STD_FUNCTION)
using std::function;
#else // defined(ASIO_HAS_STD_FUNCTION)
using boost::function;
#endif // defined(ASIO_HAS_STD_FUNCTION)
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_FUNCTIONAL_HPP

View File

@ -1,33 +0,0 @@
//
// detail/future.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_FUTURE_HPP
#define ASIO_DETAIL_FUTURE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_STD_FUTURE)
# include <future>
// Even though the future header is available, libstdc++ may not implement the
// std::future class itself. However, we need to have already included the
// future header to reliably test for _GLIBCXX_HAS_GTHREADS.
# if defined(__GNUC__) && !defined(ASIO_HAS_CLANG_LIBCXX)
# if defined(_GLIBCXX_HAS_GTHREADS)
# define ASIO_HAS_STD_FUTURE_CLASS 1
# endif // defined(_GLIBCXX_HAS_GTHREADS)
# else // defined(__GNUC__) && !defined(ASIO_HAS_CLANG_LIBCXX)
# define ASIO_HAS_STD_FUTURE_CLASS 1
# endif // defined(__GNUC__) && !defined(ASIO_HAS_CLANG_LIBCXX)
#endif // defined(ASIO_HAS_STD_FUTURE)
#endif // ASIO_DETAIL_FUTURE_HPP

View File

@ -1,91 +0,0 @@
//
// detail/gcc_arm_fenced_block.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_GCC_ARM_FENCED_BLOCK_HPP
#define ASIO_DETAIL_GCC_ARM_FENCED_BLOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(__GNUC__) && defined(__arm__)
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class gcc_arm_fenced_block
: private noncopyable
{
public:
enum half_t { half };
enum full_t { full };
// Constructor for a half fenced block.
explicit gcc_arm_fenced_block(half_t)
{
}
// Constructor for a full fenced block.
explicit gcc_arm_fenced_block(full_t)
{
barrier();
}
// Destructor.
~gcc_arm_fenced_block()
{
barrier();
}
private:
static void barrier()
{
#if defined(__ARM_ARCH_4__) \
|| defined(__ARM_ARCH_4T__) \
|| defined(__ARM_ARCH_5__) \
|| defined(__ARM_ARCH_5E__) \
|| defined(__ARM_ARCH_5T__) \
|| defined(__ARM_ARCH_5TE__) \
|| defined(__ARM_ARCH_5TEJ__) \
|| defined(__ARM_ARCH_6__) \
|| defined(__ARM_ARCH_6J__) \
|| defined(__ARM_ARCH_6K__) \
|| defined(__ARM_ARCH_6Z__) \
|| defined(__ARM_ARCH_6ZK__) \
|| defined(__ARM_ARCH_6T2__)
# if defined(__thumb__)
// This is just a placeholder and almost certainly not sufficient.
__asm__ __volatile__ ("" : : : "memory");
# else // defined(__thumb__)
int a = 0, b = 0;
__asm__ __volatile__ ("swp %0, %1, [%2]"
: "=&r"(a) : "r"(1), "r"(&b) : "memory", "cc");
# endif // defined(__thumb__)
#else
// ARMv7 and later.
__asm__ __volatile__ ("dmb" : : : "memory");
#endif
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(__GNUC__) && defined(__arm__)
#endif // ASIO_DETAIL_GCC_ARM_FENCED_BLOCK_HPP

View File

@ -1,68 +0,0 @@
//
// detail/gcc_hppa_fenced_block.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_GCC_HPPA_FENCED_BLOCK_HPP
#define ASIO_DETAIL_GCC_HPPA_FENCED_BLOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(__GNUC__) && (defined(__hppa) || defined(__hppa__))
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class gcc_hppa_fenced_block
: private noncopyable
{
public:
enum half_t { half };
enum full_t { full };
// Constructor for a half fenced block.
explicit gcc_hppa_fenced_block(half_t)
{
}
// Constructor for a full fenced block.
explicit gcc_hppa_fenced_block(full_t)
{
barrier();
}
// Destructor.
~gcc_hppa_fenced_block()
{
barrier();
}
private:
static void barrier()
{
// This is just a placeholder and almost certainly not sufficient.
__asm__ __volatile__ ("" : : : "memory");
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(__GNUC__) && (defined(__hppa) || defined(__hppa__))
#endif // ASIO_DETAIL_GCC_HPPA_FENCED_BLOCK_HPP

View File

@ -1,65 +0,0 @@
//
// detail/gcc_sync_fenced_block.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_GCC_SYNC_FENCED_BLOCK_HPP
#define ASIO_DETAIL_GCC_SYNC_FENCED_BLOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(__GNUC__) \
&& ((__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4)) \
&& !defined(__INTEL_COMPILER) && !defined(__ICL) \
&& !defined(__ICC) && !defined(__ECC) && !defined(__PATHSCALE__)
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class gcc_sync_fenced_block
: private noncopyable
{
public:
enum half_or_full_t { half, full };
// Constructor.
explicit gcc_sync_fenced_block(half_or_full_t)
: value_(0)
{
__sync_lock_test_and_set(&value_, 1);
}
// Destructor.
~gcc_sync_fenced_block()
{
__sync_lock_release(&value_);
}
private:
int value_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(__GNUC__)
// && ((__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || (__GNUC__ > 4))
// && !defined(__INTEL_COMPILER) && !defined(__ICL)
// && !defined(__ICC) && !defined(__ECC) && !defined(__PATHSCALE__)
#endif // ASIO_DETAIL_GCC_SYNC_FENCED_BLOCK_HPP

View File

@ -1,99 +0,0 @@
//
// detail/gcc_x86_fenced_block.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_GCC_X86_FENCED_BLOCK_HPP
#define ASIO_DETAIL_GCC_X86_FENCED_BLOCK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class gcc_x86_fenced_block
: private noncopyable
{
public:
enum half_t { half };
enum full_t { full };
// Constructor for a half fenced block.
explicit gcc_x86_fenced_block(half_t)
{
}
// Constructor for a full fenced block.
explicit gcc_x86_fenced_block(full_t)
{
lbarrier();
}
// Destructor.
~gcc_x86_fenced_block()
{
sbarrier();
}
private:
static int barrier()
{
int r = 0, m = 1;
__asm__ __volatile__ (
"xchgl %0, %1" :
"=r"(r), "=m"(m) :
"0"(1), "m"(m) :
"memory", "cc");
return r;
}
static void lbarrier()
{
#if defined(__SSE2__)
# if (__GNUC__ >= 4) && !defined(__INTEL_COMPILER) && !defined(__ICL)
__builtin_ia32_lfence();
# else // (__GNUC__ >= 4) && !defined(__INTEL_COMPILER) && !defined(__ICL)
__asm__ __volatile__ ("lfence" ::: "memory");
# endif // (__GNUC__ >= 4) && !defined(__INTEL_COMPILER) && !defined(__ICL)
#else // defined(__SSE2__)
barrier();
#endif // defined(__SSE2__)
}
static void sbarrier()
{
#if defined(__SSE2__)
# if (__GNUC__ >= 4) && !defined(__INTEL_COMPILER) && !defined(__ICL)
__builtin_ia32_sfence();
# else // (__GNUC__ >= 4) && !defined(__INTEL_COMPILER) && !defined(__ICL)
__asm__ __volatile__ ("sfence" ::: "memory");
# endif // (__GNUC__ >= 4) && !defined(__INTEL_COMPILER) && !defined(__ICL)
#else // defined(__SSE2__)
barrier();
#endif // defined(__SSE2__)
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#endif // ASIO_DETAIL_GCC_X86_FENCED_BLOCK_HPP

View File

@ -1,52 +0,0 @@
//
// detail/global.hpp
// ~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_GLOBAL_HPP
#define ASIO_DETAIL_GLOBAL_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if !defined(ASIO_HAS_THREADS)
# include "asio/detail/null_global.hpp"
#elif defined(ASIO_WINDOWS)
# include "asio/detail/win_global.hpp"
#elif defined(ASIO_HAS_PTHREADS)
# include "asio/detail/posix_global.hpp"
#elif defined(ASIO_HAS_STD_CALL_ONCE)
# include "asio/detail/std_global.hpp"
#else
# error Only Windows, POSIX and std::call_once are supported!
#endif
namespace asio {
namespace detail {
template <typename T>
inline T& global()
{
#if !defined(ASIO_HAS_THREADS)
return null_global<T>();
#elif defined(ASIO_WINDOWS)
return win_global<T>();
#elif defined(ASIO_HAS_PTHREADS)
return posix_global<T>();
#elif defined(ASIO_HAS_STD_CALL_ONCE)
return std_global<T>();
#endif
}
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_GLOBAL_HPP

View File

@ -1,284 +0,0 @@
//
// detail/handler_alloc_helpers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
#define ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/memory.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/recycling_allocator.hpp"
#include "asio/detail/thread_info_base.hpp"
#include "asio/associated_allocator.hpp"
#include "asio/handler_alloc_hook.hpp"
#include "asio/detail/push_options.hpp"
// Calls to asio_handler_allocate and asio_handler_deallocate must be made from
// a namespace that does not contain any overloads of these functions. The
// asio_handler_alloc_helpers namespace is defined here for that purpose.
namespace asio_handler_alloc_helpers {
#if defined(ASIO_NO_DEPRECATED)
template <typename Handler>
inline void error_if_hooks_are_defined(Handler& h)
{
using asio::asio_handler_allocate;
// If you get an error here it is because some of your handlers still
// overload asio_handler_allocate, but this hook is no longer used.
(void)static_cast<asio::asio_handler_allocate_is_no_longer_used>(
asio_handler_allocate(static_cast<std::size_t>(0),
asio::detail::addressof(h)));
using asio::asio_handler_deallocate;
// If you get an error here it is because some of your handlers still
// overload asio_handler_deallocate, but this hook is no longer used.
(void)static_cast<asio::asio_handler_deallocate_is_no_longer_used>(
asio_handler_deallocate(static_cast<void*>(0),
static_cast<std::size_t>(0), asio::detail::addressof(h)));
}
#endif // defined(ASIO_NO_DEPRECATED)
template <typename Handler>
inline void* allocate(std::size_t s, Handler& h)
{
#if !defined(ASIO_HAS_HANDLER_HOOKS)
return ::operator new(s);
#elif defined(ASIO_NO_DEPRECATED)
// The asio_handler_allocate hook is no longer used to obtain memory.
(void)&error_if_hooks_are_defined<Handler>;
(void)h;
#if !defined(ASIO_DISABLE_SMALL_BLOCK_RECYCLING)
return asio::detail::thread_info_base::allocate(
asio::detail::thread_context::top_of_thread_call_stack(), s);
#else // !defined(ASIO_DISABLE_SMALL_BLOCK_RECYCLING)
return ::operator new(size);
#endif // !defined(ASIO_DISABLE_SMALL_BLOCK_RECYCLING)
#else
using asio::asio_handler_allocate;
return asio_handler_allocate(s, asio::detail::addressof(h));
#endif
}
template <typename Handler>
inline void deallocate(void* p, std::size_t s, Handler& h)
{
#if !defined(ASIO_HAS_HANDLER_HOOKS)
::operator delete(p);
#elif defined(ASIO_NO_DEPRECATED)
// The asio_handler_allocate hook is no longer used to obtain memory.
(void)&error_if_hooks_are_defined<Handler>;
(void)h;
#if !defined(ASIO_DISABLE_SMALL_BLOCK_RECYCLING)
asio::detail::thread_info_base::deallocate(
asio::detail::thread_context::top_of_thread_call_stack(), p, s);
#else // !defined(ASIO_DISABLE_SMALL_BLOCK_RECYCLING)
(void)s;
::operator delete(p);
#endif // !defined(ASIO_DISABLE_SMALL_BLOCK_RECYCLING)
#else
using asio::asio_handler_deallocate;
asio_handler_deallocate(p, s, asio::detail::addressof(h));
#endif
}
} // namespace asio_handler_alloc_helpers
namespace asio {
namespace detail {
template <typename Handler, typename T>
class hook_allocator
{
public:
typedef T value_type;
template <typename U>
struct rebind
{
typedef hook_allocator<Handler, U> other;
};
explicit hook_allocator(Handler& h)
: handler_(h)
{
}
template <typename U>
hook_allocator(const hook_allocator<Handler, U>& a)
: handler_(a.handler_)
{
}
T* allocate(std::size_t n)
{
return static_cast<T*>(
asio_handler_alloc_helpers::allocate(sizeof(T) * n, handler_));
}
void deallocate(T* p, std::size_t n)
{
asio_handler_alloc_helpers::deallocate(p, sizeof(T) * n, handler_);
}
//private:
Handler& handler_;
};
template <typename Handler>
class hook_allocator<Handler, void>
{
public:
typedef void value_type;
template <typename U>
struct rebind
{
typedef hook_allocator<Handler, U> other;
};
explicit hook_allocator(Handler& h)
: handler_(h)
{
}
template <typename U>
hook_allocator(const hook_allocator<Handler, U>& a)
: handler_(a.handler_)
{
}
//private:
Handler& handler_;
};
template <typename Handler, typename Allocator>
struct get_hook_allocator
{
typedef Allocator type;
static type get(Handler&, const Allocator& a)
{
return a;
}
};
template <typename Handler, typename T>
struct get_hook_allocator<Handler, std::allocator<T> >
{
typedef hook_allocator<Handler, T> type;
static type get(Handler& handler, const std::allocator<T>&)
{
return type(handler);
}
};
} // namespace detail
} // namespace asio
#define ASIO_DEFINE_HANDLER_PTR(op) \
struct ptr \
{ \
Handler* h; \
op* v; \
op* p; \
~ptr() \
{ \
reset(); \
} \
static op* allocate(Handler& handler) \
{ \
typedef typename ::asio::associated_allocator< \
Handler>::type associated_allocator_type; \
typedef typename ::asio::detail::get_hook_allocator< \
Handler, associated_allocator_type>::type hook_allocator_type; \
ASIO_REBIND_ALLOC(hook_allocator_type, op) a( \
::asio::detail::get_hook_allocator< \
Handler, associated_allocator_type>::get( \
handler, ::asio::get_associated_allocator(handler))); \
return a.allocate(1); \
} \
void reset() \
{ \
if (p) \
{ \
p->~op(); \
p = 0; \
} \
if (v) \
{ \
typedef typename ::asio::associated_allocator< \
Handler>::type associated_allocator_type; \
typedef typename ::asio::detail::get_hook_allocator< \
Handler, associated_allocator_type>::type hook_allocator_type; \
ASIO_REBIND_ALLOC(hook_allocator_type, op) a( \
::asio::detail::get_hook_allocator< \
Handler, associated_allocator_type>::get( \
*h, ::asio::get_associated_allocator(*h))); \
a.deallocate(static_cast<op*>(v), 1); \
v = 0; \
} \
} \
} \
/**/
#define ASIO_DEFINE_TAGGED_HANDLER_ALLOCATOR_PTR(purpose, op) \
struct ptr \
{ \
const Alloc* a; \
void* v; \
op* p; \
~ptr() \
{ \
reset(); \
} \
static op* allocate(const Alloc& a) \
{ \
typedef typename ::asio::detail::get_recycling_allocator< \
Alloc, purpose>::type recycling_allocator_type; \
ASIO_REBIND_ALLOC(recycling_allocator_type, op) a1( \
::asio::detail::get_recycling_allocator< \
Alloc, purpose>::get(a)); \
return a1.allocate(1); \
} \
void reset() \
{ \
if (p) \
{ \
p->~op(); \
p = 0; \
} \
if (v) \
{ \
typedef typename ::asio::detail::get_recycling_allocator< \
Alloc, purpose>::type recycling_allocator_type; \
ASIO_REBIND_ALLOC(recycling_allocator_type, op) a1( \
::asio::detail::get_recycling_allocator< \
Alloc, purpose>::get(*a)); \
a1.deallocate(static_cast<op*>(v), 1); \
v = 0; \
} \
} \
} \
/**/
#define ASIO_DEFINE_HANDLER_ALLOCATOR_PTR(op) \
ASIO_DEFINE_TAGGED_HANDLER_ALLOCATOR_PTR( \
::asio::detail::thread_info_base::default_tag, op ) \
/**/
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_HANDLER_ALLOC_HELPERS_HPP

View File

@ -1,45 +0,0 @@
//
// detail/handler_cont_helpers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_CONT_HELPERS_HPP
#define ASIO_DETAIL_HANDLER_CONT_HELPERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/memory.hpp"
#include "asio/handler_continuation_hook.hpp"
#include "asio/detail/push_options.hpp"
// Calls to asio_handler_is_continuation must be made from a namespace that
// does not contain overloads of this function. This namespace is defined here
// for that purpose.
namespace asio_handler_cont_helpers {
template <typename Context>
inline bool is_continuation(Context& context)
{
#if !defined(ASIO_HAS_HANDLER_HOOKS)
return false;
#else
using asio::asio_handler_is_continuation;
return asio_handler_is_continuation(
asio::detail::addressof(context));
#endif
}
} // namespace asio_handler_cont_helpers
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_HANDLER_CONT_HELPERS_HPP

View File

@ -1,80 +0,0 @@
//
// detail/handler_invoke_helpers.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_INVOKE_HELPERS_HPP
#define ASIO_DETAIL_HANDLER_INVOKE_HELPERS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/detail/memory.hpp"
#include "asio/handler_invoke_hook.hpp"
#include "asio/detail/push_options.hpp"
// Calls to asio_handler_invoke must be made from a namespace that does not
// contain overloads of this function. The asio_handler_invoke_helpers
// namespace is defined here for that purpose.
namespace asio_handler_invoke_helpers {
#if defined(ASIO_NO_DEPRECATED)
template <typename Function, typename Context>
inline void error_if_hook_is_defined(Function& function, Context& context)
{
using asio::asio_handler_invoke;
// If you get an error here it is because some of your handlers still
// overload asio_handler_invoke, but this hook is no longer used.
(void)static_cast<asio::asio_handler_invoke_is_no_longer_used>(
asio_handler_invoke(function, asio::detail::addressof(context)));
}
#endif // defined(ASIO_NO_DEPRECATED)
template <typename Function, typename Context>
inline void invoke(Function& function, Context& context)
{
#if !defined(ASIO_HAS_HANDLER_HOOKS)
Function tmp(function);
tmp();
#elif defined(ASIO_NO_DEPRECATED)
// The asio_handler_invoke hook is no longer used to invoke the function.
(void)&error_if_hook_is_defined<Function, Context>;
(void)context;
function();
#else
using asio::asio_handler_invoke;
asio_handler_invoke(function, asio::detail::addressof(context));
#endif
}
template <typename Function, typename Context>
inline void invoke(const Function& function, Context& context)
{
#if !defined(ASIO_HAS_HANDLER_HOOKS)
Function tmp(function);
tmp();
#elif defined(ASIO_NO_DEPRECATED)
// The asio_handler_invoke hook is no longer used to invoke the function.
(void)&error_if_hook_is_defined<const Function, Context>;
(void)context;
Function tmp(function);
tmp();
#else
using asio::asio_handler_invoke;
asio_handler_invoke(function, asio::detail::addressof(context));
#endif
}
} // namespace asio_handler_invoke_helpers
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_HANDLER_INVOKE_HELPERS_HPP

View File

@ -1,264 +0,0 @@
//
// detail/handler_tracking.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_TRACKING_HPP
#define ASIO_DETAIL_HANDLER_TRACKING_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
namespace asio {
class execution_context;
} // namespace asio
#if defined(ASIO_CUSTOM_HANDLER_TRACKING)
# include ASIO_CUSTOM_HANDLER_TRACKING
#elif defined(ASIO_ENABLE_HANDLER_TRACKING)
# include "asio/error_code.hpp"
# include "asio/detail/cstdint.hpp"
# include "asio/detail/static_mutex.hpp"
# include "asio/detail/tss_ptr.hpp"
#endif // defined(ASIO_ENABLE_HANDLER_TRACKING)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
#if defined(ASIO_CUSTOM_HANDLER_TRACKING)
// The user-specified header must define the following macros:
// - ASIO_INHERIT_TRACKED_HANDLER
// - ASIO_ALSO_INHERIT_TRACKED_HANDLER
// - ASIO_HANDLER_TRACKING_INIT
// - ASIO_HANDLER_CREATION(args)
// - ASIO_HANDLER_COMPLETION(args)
// - ASIO_HANDLER_INVOCATION_BEGIN(args)
// - ASIO_HANDLER_INVOCATION_END
// - ASIO_HANDLER_OPERATION(args)
// - ASIO_HANDLER_REACTOR_REGISTRATION(args)
// - ASIO_HANDLER_REACTOR_DEREGISTRATION(args)
// - ASIO_HANDLER_REACTOR_READ_EVENT
// - ASIO_HANDLER_REACTOR_WRITE_EVENT
// - ASIO_HANDLER_REACTOR_ERROR_EVENT
// - ASIO_HANDLER_REACTOR_EVENTS(args)
// - ASIO_HANDLER_REACTOR_OPERATION(args)
# if !defined(ASIO_ENABLE_HANDLER_TRACKING)
# define ASIO_ENABLE_HANDLER_TRACKING 1
# endif /// !defined(ASIO_ENABLE_HANDLER_TRACKING)
#elif defined(ASIO_ENABLE_HANDLER_TRACKING)
class handler_tracking
{
public:
class completion;
// Base class for objects containing tracked handlers.
class tracked_handler
{
private:
// Only the handler_tracking class will have access to the id.
friend class handler_tracking;
friend class completion;
uint64_t id_;
protected:
// Constructor initialises with no id.
tracked_handler() : id_(0) {}
// Prevent deletion through this type.
~tracked_handler() {}
};
// Initialise the tracking system.
ASIO_DECL static void init();
class location
{
public:
// Constructor adds a location to the stack.
ASIO_DECL explicit location(const char* file,
int line, const char* func);
// Destructor removes a location from the stack.
ASIO_DECL ~location();
private:
// Disallow copying and assignment.
location(const location&) ASIO_DELETED;
location& operator=(const location&) ASIO_DELETED;
friend class handler_tracking;
const char* file_;
int line_;
const char* func_;
location* next_;
};
// Record the creation of a tracked handler.
ASIO_DECL static void creation(
execution_context& context, tracked_handler& h,
const char* object_type, void* object,
uintmax_t native_handle, const char* op_name);
class completion
{
public:
// Constructor records that handler is to be invoked with no arguments.
ASIO_DECL explicit completion(const tracked_handler& h);
// Destructor records only when an exception is thrown from the handler, or
// if the memory is being freed without the handler having been invoked.
ASIO_DECL ~completion();
// Records that handler is to be invoked with no arguments.
ASIO_DECL void invocation_begin();
// Records that handler is to be invoked with one arguments.
ASIO_DECL void invocation_begin(const asio::error_code& ec);
// Constructor records that handler is to be invoked with two arguments.
ASIO_DECL void invocation_begin(
const asio::error_code& ec, std::size_t bytes_transferred);
// Constructor records that handler is to be invoked with two arguments.
ASIO_DECL void invocation_begin(
const asio::error_code& ec, int signal_number);
// Constructor records that handler is to be invoked with two arguments.
ASIO_DECL void invocation_begin(
const asio::error_code& ec, const char* arg);
// Record that handler invocation has ended.
ASIO_DECL void invocation_end();
private:
friend class handler_tracking;
uint64_t id_;
bool invoked_;
completion* next_;
};
// Record an operation that is not directly associated with a handler.
ASIO_DECL static void operation(execution_context& context,
const char* object_type, void* object,
uintmax_t native_handle, const char* op_name);
// Record that a descriptor has been registered with the reactor.
ASIO_DECL static void reactor_registration(execution_context& context,
uintmax_t native_handle, uintmax_t registration);
// Record that a descriptor has been deregistered from the reactor.
ASIO_DECL static void reactor_deregistration(execution_context& context,
uintmax_t native_handle, uintmax_t registration);
// Record a reactor-based operation that is associated with a handler.
ASIO_DECL static void reactor_events(execution_context& context,
uintmax_t registration, unsigned events);
// Record a reactor-based operation that is associated with a handler.
ASIO_DECL static void reactor_operation(
const tracked_handler& h, const char* op_name,
const asio::error_code& ec);
// Record a reactor-based operation that is associated with a handler.
ASIO_DECL static void reactor_operation(
const tracked_handler& h, const char* op_name,
const asio::error_code& ec, std::size_t bytes_transferred);
// Write a line of output.
ASIO_DECL static void write_line(const char* format, ...);
private:
struct tracking_state;
ASIO_DECL static tracking_state* get_state();
};
# define ASIO_INHERIT_TRACKED_HANDLER \
: public asio::detail::handler_tracking::tracked_handler
# define ASIO_ALSO_INHERIT_TRACKED_HANDLER \
, public asio::detail::handler_tracking::tracked_handler
# define ASIO_HANDLER_TRACKING_INIT \
asio::detail::handler_tracking::init()
# define ASIO_HANDLER_LOCATION(args) \
asio::detail::handler_tracking::location tracked_location args
# define ASIO_HANDLER_CREATION(args) \
asio::detail::handler_tracking::creation args
# define ASIO_HANDLER_COMPLETION(args) \
asio::detail::handler_tracking::completion tracked_completion args
# define ASIO_HANDLER_INVOCATION_BEGIN(args) \
tracked_completion.invocation_begin args
# define ASIO_HANDLER_INVOCATION_END \
tracked_completion.invocation_end()
# define ASIO_HANDLER_OPERATION(args) \
asio::detail::handler_tracking::operation args
# define ASIO_HANDLER_REACTOR_REGISTRATION(args) \
asio::detail::handler_tracking::reactor_registration args
# define ASIO_HANDLER_REACTOR_DEREGISTRATION(args) \
asio::detail::handler_tracking::reactor_deregistration args
# define ASIO_HANDLER_REACTOR_READ_EVENT 1
# define ASIO_HANDLER_REACTOR_WRITE_EVENT 2
# define ASIO_HANDLER_REACTOR_ERROR_EVENT 4
# define ASIO_HANDLER_REACTOR_EVENTS(args) \
asio::detail::handler_tracking::reactor_events args
# define ASIO_HANDLER_REACTOR_OPERATION(args) \
asio::detail::handler_tracking::reactor_operation args
#else // defined(ASIO_ENABLE_HANDLER_TRACKING)
# define ASIO_INHERIT_TRACKED_HANDLER
# define ASIO_ALSO_INHERIT_TRACKED_HANDLER
# define ASIO_HANDLER_TRACKING_INIT (void)0
# define ASIO_HANDLER_LOCATION(loc) (void)0
# define ASIO_HANDLER_CREATION(args) (void)0
# define ASIO_HANDLER_COMPLETION(args) (void)0
# define ASIO_HANDLER_INVOCATION_BEGIN(args) (void)0
# define ASIO_HANDLER_INVOCATION_END (void)0
# define ASIO_HANDLER_OPERATION(args) (void)0
# define ASIO_HANDLER_REACTOR_REGISTRATION(args) (void)0
# define ASIO_HANDLER_REACTOR_DEREGISTRATION(args) (void)0
# define ASIO_HANDLER_REACTOR_READ_EVENT 0
# define ASIO_HANDLER_REACTOR_WRITE_EVENT 0
# define ASIO_HANDLER_REACTOR_ERROR_EVENT 0
# define ASIO_HANDLER_REACTOR_EVENTS(args) (void)0
# define ASIO_HANDLER_REACTOR_OPERATION(args) (void)0
#endif // defined(ASIO_ENABLE_HANDLER_TRACKING)
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#if defined(ASIO_HEADER_ONLY)
# include "asio/detail/impl/handler_tracking.ipp"
#endif // defined(ASIO_HEADER_ONLY)
#endif // ASIO_DETAIL_HANDLER_TRACKING_HPP

View File

@ -1,556 +0,0 @@
//
// detail/handler_type_requirements.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_TYPE_REQUIREMENTS_HPP
#define ASIO_DETAIL_HANDLER_TYPE_REQUIREMENTS_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
// Older versions of gcc have difficulty compiling the sizeof expressions where
// we test the handler type requirements. We'll disable checking of handler type
// requirements for those compilers, but otherwise enable it by default.
#if !defined(ASIO_DISABLE_HANDLER_TYPE_REQUIREMENTS)
# if !defined(__GNUC__) || (__GNUC__ >= 4)
# define ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS 1
# endif // !defined(__GNUC__) || (__GNUC__ >= 4)
#endif // !defined(ASIO_DISABLE_HANDLER_TYPE_REQUIREMENTS)
// With C++0x we can use a combination of enhanced SFINAE and static_assert to
// generate better template error messages. As this technique is not yet widely
// portable, we'll only enable it for tested compilers.
#if !defined(ASIO_DISABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT)
# if defined(__GNUC__)
# if ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 5)) || (__GNUC__ > 4)
# if defined(__GXX_EXPERIMENTAL_CXX0X__)
# define ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT 1
# endif // defined(__GXX_EXPERIMENTAL_CXX0X__)
# endif // ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 5)) || (__GNUC__ > 4)
# endif // defined(__GNUC__)
# if defined(ASIO_MSVC)
# if (_MSC_VER >= 1600)
# define ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT 1
# endif // (_MSC_VER >= 1600)
# endif // defined(ASIO_MSVC)
# if defined(__clang__)
# if __has_feature(__cxx_static_assert__)
# define ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT 1
# endif // __has_feature(cxx_static_assert)
# endif // defined(__clang__)
#endif // !defined(ASIO_DISABLE_HANDLER_TYPE_REQUIREMENTS)
#if defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS)
# include "asio/async_result.hpp"
#endif // defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS)
namespace asio {
namespace detail {
#if defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS)
# if defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT)
template <typename Handler>
auto zero_arg_copyable_handler_test(Handler h, void*)
-> decltype(
sizeof(Handler(static_cast<const Handler&>(h))),
((h)()),
char(0));
template <typename Handler>
char (&zero_arg_copyable_handler_test(Handler, ...))[2];
template <typename Handler, typename Arg1>
auto one_arg_handler_test(Handler h, Arg1* a1)
-> decltype(
sizeof(Handler(ASIO_MOVE_CAST(Handler)(h))),
((h)(*a1)),
char(0));
template <typename Handler>
char (&one_arg_handler_test(Handler h, ...))[2];
template <typename Handler, typename Arg1, typename Arg2>
auto two_arg_handler_test(Handler h, Arg1* a1, Arg2* a2)
-> decltype(
sizeof(Handler(ASIO_MOVE_CAST(Handler)(h))),
((h)(*a1, *a2)),
char(0));
template <typename Handler>
char (&two_arg_handler_test(Handler, ...))[2];
template <typename Handler, typename Arg1, typename Arg2>
auto two_arg_move_handler_test(Handler h, Arg1* a1, Arg2* a2)
-> decltype(
sizeof(Handler(ASIO_MOVE_CAST(Handler)(h))),
((h)(*a1, ASIO_MOVE_CAST(Arg2)(*a2))),
char(0));
template <typename Handler>
char (&two_arg_move_handler_test(Handler, ...))[2];
# define ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT(expr, msg) \
static_assert(expr, msg);
# else // defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT)
# define ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT(expr, msg)
# endif // defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS_ASSERT)
template <typename T> T& lvref();
template <typename T> T& lvref(T);
template <typename T> const T& clvref();
template <typename T> const T& clvref(T);
#if defined(ASIO_HAS_MOVE)
template <typename T> T rvref();
template <typename T> T rvref(T);
#else // defined(ASIO_HAS_MOVE)
template <typename T> const T& rvref();
template <typename T> const T& rvref(T);
#endif // defined(ASIO_HAS_MOVE)
template <typename T> char argbyv(T);
template <int>
struct handler_type_requirements
{
};
#define ASIO_LEGACY_COMPLETION_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void()) asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::zero_arg_copyable_handler_test( \
asio::detail::clvref< \
asio_true_handler_type>(), 0)) == 1, \
"CompletionHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::clvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()(), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_READ_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, std::size_t)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const std::size_t*>(0))) == 1, \
"ReadHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const std::size_t>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_WRITE_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, std::size_t)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const std::size_t*>(0))) == 1, \
"WriteHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const std::size_t>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_ACCEPT_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::one_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0))) == 1, \
"AcceptHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_MOVE_ACCEPT_HANDLER_CHECK( \
handler_type, handler, socket_type) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, socket_type)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_move_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<socket_type*>(0))) == 1, \
"MoveAcceptHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::rvref<socket_type>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_CONNECT_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::one_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0))) == 1, \
"ConnectHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_RANGE_CONNECT_HANDLER_CHECK( \
handler_type, handler, endpoint_type) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, endpoint_type)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const endpoint_type*>(0))) == 1, \
"RangeConnectHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const endpoint_type>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_ITERATOR_CONNECT_HANDLER_CHECK( \
handler_type, handler, iter_type) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, iter_type)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const iter_type*>(0))) == 1, \
"IteratorConnectHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const iter_type>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_RESOLVE_HANDLER_CHECK( \
handler_type, handler, range_type) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, range_type)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const range_type*>(0))) == 1, \
"ResolveHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const range_type>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_WAIT_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::one_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0))) == 1, \
"WaitHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_SIGNAL_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, int)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const int*>(0))) == 1, \
"SignalHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const int>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_HANDSHAKE_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::one_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0))) == 1, \
"HandshakeHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_BUFFERED_HANDSHAKE_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code, std::size_t)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::two_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0), \
static_cast<const std::size_t*>(0))) == 1, \
"BufferedHandshakeHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>(), \
asio::detail::lvref<const std::size_t>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#define ASIO_SHUTDOWN_HANDLER_CHECK( \
handler_type, handler) \
\
typedef ASIO_HANDLER_TYPE(handler_type, \
void(asio::error_code)) \
asio_true_handler_type; \
\
ASIO_HANDLER_TYPE_REQUIREMENTS_ASSERT( \
sizeof(asio::detail::one_arg_handler_test( \
asio::detail::rvref< \
asio_true_handler_type>(), \
static_cast<const asio::error_code*>(0))) == 1, \
"ShutdownHandler type requirements not met") \
\
typedef asio::detail::handler_type_requirements< \
sizeof( \
asio::detail::argbyv( \
asio::detail::rvref< \
asio_true_handler_type>())) + \
sizeof( \
asio::detail::lvref< \
asio_true_handler_type>()( \
asio::detail::lvref<const asio::error_code>()), \
char(0))> ASIO_UNUSED_TYPEDEF
#else // !defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS)
#define ASIO_LEGACY_COMPLETION_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_READ_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_WRITE_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_ACCEPT_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_MOVE_ACCEPT_HANDLER_CHECK( \
handler_type, handler, socket_type) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_CONNECT_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_RANGE_CONNECT_HANDLER_CHECK( \
handler_type, handler, iter_type) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_ITERATOR_CONNECT_HANDLER_CHECK( \
handler_type, handler, iter_type) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_RESOLVE_HANDLER_CHECK( \
handler_type, handler, iter_type) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_WAIT_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_SIGNAL_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_HANDSHAKE_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_BUFFERED_HANDSHAKE_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#define ASIO_SHUTDOWN_HANDLER_CHECK( \
handler_type, handler) \
typedef int ASIO_UNUSED_TYPEDEF
#endif // !defined(ASIO_ENABLE_HANDLER_TYPE_REQUIREMENTS)
} // namespace detail
} // namespace asio
#endif // ASIO_DETAIL_HANDLER_TYPE_REQUIREMENTS_HPP

View File

@ -1,514 +0,0 @@
//
// detail/handler_work.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HANDLER_WORK_HPP
#define ASIO_DETAIL_HANDLER_WORK_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include "asio/associated_executor.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/type_traits.hpp"
#include "asio/execution/allocator.hpp"
#include "asio/execution/blocking.hpp"
#include "asio/execution/execute.hpp"
#include "asio/execution/executor.hpp"
#include "asio/execution/outstanding_work.hpp"
#include "asio/executor_work_guard.hpp"
#include "asio/prefer.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
class executor;
class io_context;
#if !defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
class any_io_executor;
#endif // !defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
namespace execution {
#if defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename...> class any_executor;
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
template <typename, typename, typename, typename, typename,
typename, typename, typename, typename> class any_executor;
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
} // namespace execution
namespace detail {
template <typename Executor, typename CandidateExecutor = void,
typename IoContext = io_context,
typename PolymorphicExecutor = executor, typename = void>
class handler_work_base
{
public:
explicit handler_work_base(int, int, const Executor& ex) ASIO_NOEXCEPT
: executor_(asio::prefer(ex, execution::outstanding_work.tracked))
{
}
template <typename OtherExecutor>
handler_work_base(const Executor& ex,
const OtherExecutor&) ASIO_NOEXCEPT
: executor_(asio::prefer(ex, execution::outstanding_work.tracked))
{
}
handler_work_base(const handler_work_base& other) ASIO_NOEXCEPT
: executor_(other.executor_)
{
}
#if defined(ASIO_HAS_MOVE)
handler_work_base(handler_work_base&& other) ASIO_NOEXCEPT
: executor_(ASIO_MOVE_CAST(executor_type)(other.executor_))
{
}
#endif // defined(ASIO_HAS_MOVE)
bool owns_work() const ASIO_NOEXCEPT
{
return true;
}
template <typename Function, typename Handler>
void dispatch(Function& function, Handler& handler)
{
execution::execute(
asio::prefer(executor_,
execution::blocking.possibly,
execution::allocator((get_associated_allocator)(handler))),
ASIO_MOVE_CAST(Function)(function));
}
private:
typedef typename decay<
typename prefer_result<Executor,
execution::outstanding_work_t::tracked_t
>::type
>::type executor_type;
executor_type executor_;
};
template <typename Executor, typename CandidateExecutor,
typename IoContext, typename PolymorphicExecutor>
class handler_work_base<Executor, CandidateExecutor,
IoContext, PolymorphicExecutor,
typename enable_if<
!execution::is_executor<Executor>::value
&& (!is_same<Executor, PolymorphicExecutor>::value
|| !is_same<CandidateExecutor, void>::value)
>::type>
{
public:
explicit handler_work_base(int, int, const Executor& ex) ASIO_NOEXCEPT
: executor_(ex),
owns_work_(true)
{
executor_.on_work_started();
}
handler_work_base(const Executor& ex,
const Executor& candidate) ASIO_NOEXCEPT
: executor_(ex),
owns_work_(ex != candidate)
{
if (owns_work_)
executor_.on_work_started();
}
template <typename OtherExecutor>
handler_work_base(const Executor& ex,
const OtherExecutor&) ASIO_NOEXCEPT
: executor_(ex),
owns_work_(true)
{
executor_.on_work_started();
}
handler_work_base(const handler_work_base& other) ASIO_NOEXCEPT
: executor_(other.executor_),
owns_work_(other.owns_work_)
{
if (owns_work_)
executor_.on_work_started();
}
#if defined(ASIO_HAS_MOVE)
handler_work_base(handler_work_base&& other) ASIO_NOEXCEPT
: executor_(ASIO_MOVE_CAST(Executor)(other.executor_)),
owns_work_(other.owns_work_)
{
other.owns_work_ = false;
}
#endif // defined(ASIO_HAS_MOVE)
~handler_work_base()
{
if (owns_work_)
executor_.on_work_finished();
}
bool owns_work() const ASIO_NOEXCEPT
{
return owns_work_;
}
template <typename Function, typename Handler>
void dispatch(Function& function, Handler& handler)
{
executor_.dispatch(ASIO_MOVE_CAST(Function)(function),
asio::get_associated_allocator(handler));
}
private:
Executor executor_;
bool owns_work_;
};
template <typename Executor, typename IoContext, typename PolymorphicExecutor>
class handler_work_base<Executor, void, IoContext, PolymorphicExecutor,
typename enable_if<
is_same<
Executor,
typename IoContext::executor_type
>::value
>::type>
{
public:
explicit handler_work_base(int, int, const Executor&)
{
}
bool owns_work() const ASIO_NOEXCEPT
{
return false;
}
template <typename Function, typename Handler>
void dispatch(Function& function, Handler& handler)
{
// When using a native implementation, I/O completion handlers are
// already dispatched according to the execution context's executor's
// rules. We can call the function directly.
asio_handler_invoke_helpers::invoke(function, handler);
}
};
template <typename Executor, typename IoContext>
class handler_work_base<Executor, void, IoContext, Executor>
{
public:
explicit handler_work_base(int, int, const Executor& ex) ASIO_NOEXCEPT
#if !defined(ASIO_NO_TYPEID)
: executor_(
ex.target_type() == typeid(typename IoContext::executor_type)
? Executor() : ex)
#else // !defined(ASIO_NO_TYPEID)
: executor_(ex)
#endif // !defined(ASIO_NO_TYPEID)
{
if (executor_)
executor_.on_work_started();
}
handler_work_base(const Executor& ex,
const Executor& candidate) ASIO_NOEXCEPT
: executor_(ex != candidate ? ex : Executor())
{
if (executor_)
executor_.on_work_started();
}
template <typename OtherExecutor>
handler_work_base(const Executor& ex,
const OtherExecutor&) ASIO_NOEXCEPT
: executor_(ex)
{
executor_.on_work_started();
}
handler_work_base(const handler_work_base& other) ASIO_NOEXCEPT
: executor_(other.executor_)
{
if (executor_)
executor_.on_work_started();
}
#if defined(ASIO_HAS_MOVE)
handler_work_base(handler_work_base&& other) ASIO_NOEXCEPT
: executor_(ASIO_MOVE_CAST(Executor)(other.executor_))
{
}
#endif // defined(ASIO_HAS_MOVE)
~handler_work_base()
{
if (executor_)
executor_.on_work_finished();
}
bool owns_work() const ASIO_NOEXCEPT
{
return !!executor_;
}
template <typename Function, typename Handler>
void dispatch(Function& function, Handler& handler)
{
executor_.dispatch(ASIO_MOVE_CAST(Function)(function),
asio::get_associated_allocator(handler));
}
private:
Executor executor_;
};
template <
#if defined(ASIO_HAS_VARIADIC_TEMPLATES)
typename... SupportableProperties,
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9,
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
typename IoContext, typename PolymorphicExecutor>
class handler_work_base<
#if defined(ASIO_HAS_VARIADIC_TEMPLATES)
execution::any_executor<SupportableProperties...>,
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
execution::any_executor<T1, T2, T3, T4, T5, T6, T7, T8, T9>,
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
void, IoContext, PolymorphicExecutor>
{
public:
typedef
#if defined(ASIO_HAS_VARIADIC_TEMPLATES)
execution::any_executor<SupportableProperties...>
#else // defined(ASIO_HAS_VARIADIC_TEMPLATES)
execution::any_executor<T1, T2, T3, T4, T5, T6, T7, T8, T9>
#endif // defined(ASIO_HAS_VARIADIC_TEMPLATES)
executor_type;
explicit handler_work_base(int, int,
const executor_type& ex) ASIO_NOEXCEPT
#if !defined(ASIO_NO_TYPEID)
: executor_(
ex.target_type() == typeid(typename IoContext::executor_type)
? executor_type()
: asio::prefer(ex, execution::outstanding_work.tracked))
#else // !defined(ASIO_NO_TYPEID)
: executor_(asio::prefer(ex, execution::outstanding_work.tracked))
#endif // !defined(ASIO_NO_TYPEID)
{
}
handler_work_base(const executor_type& ex,
const executor_type& candidate) ASIO_NOEXCEPT
: executor_(ex != candidate ? ex : executor_type())
{
}
template <typename OtherExecutor>
handler_work_base(const executor_type& ex,
const OtherExecutor&) ASIO_NOEXCEPT
: executor_(asio::prefer(ex, execution::outstanding_work.tracked))
{
}
handler_work_base(const handler_work_base& other) ASIO_NOEXCEPT
: executor_(other.executor_)
{
}
#if defined(ASIO_HAS_MOVE)
handler_work_base(handler_work_base&& other) ASIO_NOEXCEPT
: executor_(ASIO_MOVE_CAST(executor_type)(other.executor_))
{
}
#endif // defined(ASIO_HAS_MOVE)
bool owns_work() const ASIO_NOEXCEPT
{
return !!executor_;
}
template <typename Function, typename Handler>
void dispatch(Function& function, Handler&)
{
execution::execute(
asio::prefer(executor_, execution::blocking.possibly),
ASIO_MOVE_CAST(Function)(function));
}
private:
executor_type executor_;
};
#if !defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
template <typename Executor, typename IoContext, typename PolymorphicExecutor>
class handler_work_base<Executor, void, IoContext, PolymorphicExecutor,
typename enable_if<
is_same<
Executor,
any_io_executor
>::value
>::type>
{
public:
typedef Executor executor_type;
explicit handler_work_base(int, int,
const executor_type& ex) ASIO_NOEXCEPT
#if !defined(ASIO_NO_TYPEID)
: executor_(
ex.target_type() == typeid(typename IoContext::executor_type)
? executor_type()
: asio::prefer(ex, execution::outstanding_work.tracked))
#else // !defined(ASIO_NO_TYPEID)
: executor_(asio::prefer(ex, execution::outstanding_work.tracked))
#endif // !defined(ASIO_NO_TYPEID)
{
}
handler_work_base(const executor_type& ex,
const executor_type& candidate) ASIO_NOEXCEPT
: executor_(ex != candidate ? ex : executor_type())
{
}
template <typename OtherExecutor>
handler_work_base(const executor_type& ex,
const OtherExecutor&) ASIO_NOEXCEPT
: executor_(asio::prefer(ex, execution::outstanding_work.tracked))
{
}
handler_work_base(const handler_work_base& other) ASIO_NOEXCEPT
: executor_(other.executor_)
{
}
#if defined(ASIO_HAS_MOVE)
handler_work_base(handler_work_base&& other) ASIO_NOEXCEPT
: executor_(ASIO_MOVE_CAST(executor_type)(other.executor_))
{
}
#endif // defined(ASIO_HAS_MOVE)
bool owns_work() const ASIO_NOEXCEPT
{
return !!executor_;
}
template <typename Function, typename Handler>
void dispatch(Function& function, Handler&)
{
execution::execute(
asio::prefer(executor_, execution::blocking.possibly),
ASIO_MOVE_CAST(Function)(function));
}
private:
executor_type executor_;
};
#endif // !defined(ASIO_USE_TS_EXECUTOR_AS_DEFAULT)
template <typename Handler, typename IoExecutor, typename = void>
class handler_work :
handler_work_base<IoExecutor>,
handler_work_base<typename associated_executor<
Handler, IoExecutor>::type, IoExecutor>
{
public:
typedef handler_work_base<IoExecutor> base1_type;
typedef handler_work_base<typename associated_executor<
Handler, IoExecutor>::type, IoExecutor> base2_type;
handler_work(Handler& handler, const IoExecutor& io_ex) ASIO_NOEXCEPT
: base1_type(0, 0, io_ex),
base2_type(asio::get_associated_executor(handler, io_ex), io_ex)
{
}
template <typename Function>
void complete(Function& function, Handler& handler)
{
if (!base1_type::owns_work() && !base2_type::owns_work())
{
// When using a native implementation, I/O completion handlers are
// already dispatched according to the execution context's executor's
// rules. We can call the function directly.
asio_handler_invoke_helpers::invoke(function, handler);
}
else
{
base2_type::dispatch(function, handler);
}
}
};
template <typename Handler, typename IoExecutor>
class handler_work<
Handler, IoExecutor,
typename enable_if<
is_same<
typename associated_executor<Handler,
IoExecutor>::asio_associated_executor_is_unspecialised,
void
>::value
>::type> : handler_work_base<IoExecutor>
{
public:
typedef handler_work_base<IoExecutor> base1_type;
handler_work(Handler&, const IoExecutor& io_ex) ASIO_NOEXCEPT
: base1_type(0, 0, io_ex)
{
}
template <typename Function>
void complete(Function& function, Handler& handler)
{
if (!base1_type::owns_work())
{
// When using a native implementation, I/O completion handlers are
// already dispatched according to the execution context's executor's
// rules. We can call the function directly.
asio_handler_invoke_helpers::invoke(function, handler);
}
else
{
base1_type::dispatch(function, handler);
}
}
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_HANDLER_WORK_HPP

View File

@ -1,331 +0,0 @@
//
// detail/hash_map.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_HASH_MAP_HPP
#define ASIO_DETAIL_HASH_MAP_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <list>
#include <utility>
#include "asio/detail/assert.hpp"
#include "asio/detail/noncopyable.hpp"
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
# include "asio/detail/socket_types.hpp"
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
inline std::size_t calculate_hash_value(int i)
{
return static_cast<std::size_t>(i);
}
inline std::size_t calculate_hash_value(void* p)
{
return reinterpret_cast<std::size_t>(p)
+ (reinterpret_cast<std::size_t>(p) >> 3);
}
#if defined(ASIO_WINDOWS) || defined(__CYGWIN__)
inline std::size_t calculate_hash_value(SOCKET s)
{
return static_cast<std::size_t>(s);
}
#endif // defined(ASIO_WINDOWS) || defined(__CYGWIN__)
// Note: assumes K and V are POD types.
template <typename K, typename V>
class hash_map
: private noncopyable
{
public:
// The type of a value in the map.
typedef std::pair<K, V> value_type;
// The type of a non-const iterator over the hash map.
typedef typename std::list<value_type>::iterator iterator;
// The type of a const iterator over the hash map.
typedef typename std::list<value_type>::const_iterator const_iterator;
// Constructor.
hash_map()
: size_(0),
buckets_(0),
num_buckets_(0)
{
}
// Destructor.
~hash_map()
{
delete[] buckets_;
}
// Get an iterator for the beginning of the map.
iterator begin()
{
return values_.begin();
}
// Get an iterator for the beginning of the map.
const_iterator begin() const
{
return values_.begin();
}
// Get an iterator for the end of the map.
iterator end()
{
return values_.end();
}
// Get an iterator for the end of the map.
const_iterator end() const
{
return values_.end();
}
// Check whether the map is empty.
bool empty() const
{
return values_.empty();
}
// Find an entry in the map.
iterator find(const K& k)
{
if (num_buckets_)
{
size_t bucket = calculate_hash_value(k) % num_buckets_;
iterator it = buckets_[bucket].first;
if (it == values_.end())
return values_.end();
iterator end_it = buckets_[bucket].last;
++end_it;
while (it != end_it)
{
if (it->first == k)
return it;
++it;
}
}
return values_.end();
}
// Find an entry in the map.
const_iterator find(const K& k) const
{
if (num_buckets_)
{
size_t bucket = calculate_hash_value(k) % num_buckets_;
const_iterator it = buckets_[bucket].first;
if (it == values_.end())
return it;
const_iterator end_it = buckets_[bucket].last;
++end_it;
while (it != end_it)
{
if (it->first == k)
return it;
++it;
}
}
return values_.end();
}
// Insert a new entry into the map.
std::pair<iterator, bool> insert(const value_type& v)
{
if (size_ + 1 >= num_buckets_)
rehash(hash_size(size_ + 1));
size_t bucket = calculate_hash_value(v.first) % num_buckets_;
iterator it = buckets_[bucket].first;
if (it == values_.end())
{
buckets_[bucket].first = buckets_[bucket].last =
values_insert(values_.end(), v);
++size_;
return std::pair<iterator, bool>(buckets_[bucket].last, true);
}
iterator end_it = buckets_[bucket].last;
++end_it;
while (it != end_it)
{
if (it->first == v.first)
return std::pair<iterator, bool>(it, false);
++it;
}
buckets_[bucket].last = values_insert(end_it, v);
++size_;
return std::pair<iterator, bool>(buckets_[bucket].last, true);
}
// Erase an entry from the map.
void erase(iterator it)
{
ASIO_ASSERT(it != values_.end());
ASIO_ASSERT(num_buckets_ != 0);
size_t bucket = calculate_hash_value(it->first) % num_buckets_;
bool is_first = (it == buckets_[bucket].first);
bool is_last = (it == buckets_[bucket].last);
if (is_first && is_last)
buckets_[bucket].first = buckets_[bucket].last = values_.end();
else if (is_first)
++buckets_[bucket].first;
else if (is_last)
--buckets_[bucket].last;
values_erase(it);
--size_;
}
// Erase a key from the map.
void erase(const K& k)
{
iterator it = find(k);
if (it != values_.end())
erase(it);
}
// Remove all entries from the map.
void clear()
{
// Clear the values.
values_.clear();
size_ = 0;
// Initialise all buckets to empty.
iterator end_it = values_.end();
for (size_t i = 0; i < num_buckets_; ++i)
buckets_[i].first = buckets_[i].last = end_it;
}
private:
// Calculate the hash size for the specified number of elements.
static std::size_t hash_size(std::size_t num_elems)
{
static std::size_t sizes[] =
{
#if defined(ASIO_HASH_MAP_BUCKETS)
ASIO_HASH_MAP_BUCKETS
#else // ASIO_HASH_MAP_BUCKETS
3, 13, 23, 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469,
12582917, 25165843
#endif // ASIO_HASH_MAP_BUCKETS
};
const std::size_t nth_size = sizeof(sizes) / sizeof(std::size_t) - 1;
for (std::size_t i = 0; i < nth_size; ++i)
if (num_elems < sizes[i])
return sizes[i];
return sizes[nth_size];
}
// Re-initialise the hash from the values already contained in the list.
void rehash(std::size_t num_buckets)
{
if (num_buckets == num_buckets_)
return;
ASIO_ASSERT(num_buckets != 0);
iterator end_iter = values_.end();
// Update number of buckets and initialise all buckets to empty.
bucket_type* tmp = new bucket_type[num_buckets];
delete[] buckets_;
buckets_ = tmp;
num_buckets_ = num_buckets;
for (std::size_t i = 0; i < num_buckets_; ++i)
buckets_[i].first = buckets_[i].last = end_iter;
// Put all values back into the hash.
iterator iter = values_.begin();
while (iter != end_iter)
{
std::size_t bucket = calculate_hash_value(iter->first) % num_buckets_;
if (buckets_[bucket].last == end_iter)
{
buckets_[bucket].first = buckets_[bucket].last = iter++;
}
else if (++buckets_[bucket].last == iter)
{
++iter;
}
else
{
values_.splice(buckets_[bucket].last, values_, iter++);
--buckets_[bucket].last;
}
}
}
// Insert an element into the values list by splicing from the spares list,
// if a spare is available, and otherwise by inserting a new element.
iterator values_insert(iterator it, const value_type& v)
{
if (spares_.empty())
{
return values_.insert(it, v);
}
else
{
spares_.front() = v;
values_.splice(it, spares_, spares_.begin());
return --it;
}
}
// Erase an element from the values list by splicing it to the spares list.
void values_erase(iterator it)
{
*it = value_type();
spares_.splice(spares_.begin(), values_, it);
}
// The number of elements in the hash.
std::size_t size_;
// The list of all values in the hash map.
std::list<value_type> values_;
// The list of spare nodes waiting to be recycled. Assumes that POD types only
// are stored in the hash map.
std::list<value_type> spares_;
// The type for a bucket in the hash table.
struct bucket_type
{
iterator first;
iterator last;
};
// The buckets in the hash.
bucket_type* buckets_;
// The number of buckets in the hash.
std::size_t num_buckets_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_HASH_MAP_HPP

View File

@ -1,118 +0,0 @@
//
// detail/impl/buffer_sequence_adapter.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_BUFFER_SEQUENCE_ADAPTER_IPP
#define ASIO_DETAIL_IMPL_BUFFER_SEQUENCE_ADAPTER_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_WINDOWS_RUNTIME)
#include <robuffer.h>
#include <windows.storage.streams.h>
#include <wrl/implements.h>
#include "asio/detail/buffer_sequence_adapter.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
class winrt_buffer_impl :
public Microsoft::WRL::RuntimeClass<
Microsoft::WRL::RuntimeClassFlags<
Microsoft::WRL::RuntimeClassType::WinRtClassicComMix>,
ABI::Windows::Storage::Streams::IBuffer,
Windows::Storage::Streams::IBufferByteAccess>
{
public:
explicit winrt_buffer_impl(const asio::const_buffer& b)
{
bytes_ = const_cast<byte*>(static_cast<const byte*>(b.data()));
length_ = b.size();
capacity_ = b.size();
}
explicit winrt_buffer_impl(const asio::mutable_buffer& b)
{
bytes_ = static_cast<byte*>(b.data());
length_ = 0;
capacity_ = b.size();
}
~winrt_buffer_impl()
{
}
STDMETHODIMP Buffer(byte** value)
{
*value = bytes_;
return S_OK;
}
STDMETHODIMP get_Capacity(UINT32* value)
{
*value = capacity_;
return S_OK;
}
STDMETHODIMP get_Length(UINT32 *value)
{
*value = length_;
return S_OK;
}
STDMETHODIMP put_Length(UINT32 value)
{
if (value > capacity_)
return E_INVALIDARG;
length_ = value;
return S_OK;
}
private:
byte* bytes_;
UINT32 length_;
UINT32 capacity_;
};
void buffer_sequence_adapter_base::init_native_buffer(
buffer_sequence_adapter_base::native_buffer_type& buf,
const asio::mutable_buffer& buffer)
{
std::memset(&buf, 0, sizeof(native_buffer_type));
Microsoft::WRL::ComPtr<IInspectable> insp
= Microsoft::WRL::Make<winrt_buffer_impl>(buffer);
buf = reinterpret_cast<Windows::Storage::Streams::IBuffer^>(insp.Get());
}
void buffer_sequence_adapter_base::init_native_buffer(
buffer_sequence_adapter_base::native_buffer_type& buf,
const asio::const_buffer& buffer)
{
std::memset(&buf, 0, sizeof(native_buffer_type));
Microsoft::WRL::ComPtr<IInspectable> insp
= Microsoft::WRL::Make<winrt_buffer_impl>(buffer);
Platform::Object^ buf_obj = reinterpret_cast<Platform::Object^>(insp.Get());
buf = reinterpret_cast<Windows::Storage::Streams::IBuffer^>(insp.Get());
}
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_WINDOWS_RUNTIME)
#endif // ASIO_DETAIL_IMPL_BUFFER_SEQUENCE_ADAPTER_IPP

View File

@ -1,608 +0,0 @@
//
// detail/impl/descriptor_ops.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_DESCRIPTOR_OPS_IPP
#define ASIO_DETAIL_IMPL_DESCRIPTOR_OPS_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#include <cerrno>
#include "asio/detail/descriptor_ops.hpp"
#include "asio/error.hpp"
#if !defined(ASIO_WINDOWS) \
&& !defined(ASIO_WINDOWS_RUNTIME) \
&& !defined(__CYGWIN__)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
namespace descriptor_ops {
int open(const char* path, int flags, asio::error_code& ec)
{
int result = ::open(path, flags);
get_last_error(ec, result < 0);
return result;
}
int close(int d, state_type& state, asio::error_code& ec)
{
int result = 0;
if (d != -1)
{
result = ::close(d);
get_last_error(ec, result < 0);
if (result != 0
&& (ec == asio::error::would_block
|| ec == asio::error::try_again))
{
// According to UNIX Network Programming Vol. 1, it is possible for
// close() to fail with EWOULDBLOCK under certain circumstances. What
// isn't clear is the state of the descriptor after this error. The one
// current OS where this behaviour is seen, Windows, says that the socket
// remains open. Therefore we'll put the descriptor back into blocking
// mode and have another attempt at closing it.
#if defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
int flags = ::fcntl(d, F_GETFL, 0);
if (flags >= 0)
::fcntl(d, F_SETFL, flags & ~O_NONBLOCK);
#else // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
ioctl_arg_type arg = 0;
::ioctl(d, FIONBIO, &arg);
#endif // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
state &= ~non_blocking;
result = ::close(d);
get_last_error(ec, result < 0);
}
}
return result;
}
bool set_user_non_blocking(int d, state_type& state,
bool value, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return false;
}
#if defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
int result = ::fcntl(d, F_GETFL, 0);
get_last_error(ec, result < 0);
if (result >= 0)
{
int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK));
result = ::fcntl(d, F_SETFL, flag);
get_last_error(ec, result < 0);
}
#else // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
ioctl_arg_type arg = (value ? 1 : 0);
int result = ::ioctl(d, FIONBIO, &arg);
get_last_error(ec, result < 0);
#endif // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
if (result >= 0)
{
if (value)
state |= user_set_non_blocking;
else
{
// Clearing the user-set non-blocking mode always overrides any
// internally-set non-blocking flag. Any subsequent asynchronous
// operations will need to re-enable non-blocking I/O.
state &= ~(user_set_non_blocking | internal_non_blocking);
}
return true;
}
return false;
}
bool set_internal_non_blocking(int d, state_type& state,
bool value, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return false;
}
if (!value && (state & user_set_non_blocking))
{
// It does not make sense to clear the internal non-blocking flag if the
// user still wants non-blocking behaviour. Return an error and let the
// caller figure out whether to update the user-set non-blocking flag.
ec = asio::error::invalid_argument;
return false;
}
#if defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
int result = ::fcntl(d, F_GETFL, 0);
get_last_error(ec, result < 0);
if (result >= 0)
{
int flag = (value ? (result | O_NONBLOCK) : (result & ~O_NONBLOCK));
result = ::fcntl(d, F_SETFL, flag);
get_last_error(ec, result < 0);
}
#else // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
ioctl_arg_type arg = (value ? 1 : 0);
int result = ::ioctl(d, FIONBIO, &arg);
get_last_error(ec, result < 0);
#endif // defined(__SYMBIAN32__) || defined(__EMSCRIPTEN__)
if (result >= 0)
{
if (value)
state |= internal_non_blocking;
else
state &= ~internal_non_blocking;
return true;
}
return false;
}
std::size_t sync_read(int d, state_type state, buf* bufs,
std::size_t count, bool all_empty, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to read 0 bytes on a stream is a no-op.
if (all_empty)
{
ec.assign(0, ec.category());
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = ::readv(d, bufs, static_cast<int>(count));
get_last_error(ec, bytes < 0);
// Check if operation succeeded.
if (bytes > 0)
return bytes;
// Check for EOF.
if (bytes == 0)
{
ec = asio::error::eof;
return 0;
}
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_read(d, 0, ec) < 0)
return 0;
}
}
std::size_t sync_read1(int d, state_type state, void* data,
std::size_t size, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to read 0 bytes on a stream is a no-op.
if (size == 0)
{
ec.assign(0, ec.category());
return 0;
}
// Read some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = ::read(d, data, size);
get_last_error(ec, bytes < 0);
// Check if operation succeeded.
if (bytes > 0)
return bytes;
// Check for EOF.
if (bytes == 0)
{
ec = asio::error::eof;
return 0;
}
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_read(d, 0, ec) < 0)
return 0;
}
}
bool non_blocking_read(int d, buf* bufs, std::size_t count,
asio::error_code& ec, std::size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = ::readv(d, bufs, static_cast<int>(count));
get_last_error(ec, bytes < 0);
// Check for end of stream.
if (bytes == 0)
{
ec = asio::error::eof;
return true;
}
// Check if operation succeeded.
if (bytes > 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
bool non_blocking_read1(int d, void* data, std::size_t size,
asio::error_code& ec, std::size_t& bytes_transferred)
{
for (;;)
{
// Read some data.
signed_size_type bytes = ::read(d, data, size);
get_last_error(ec, bytes < 0);
// Check for end of stream.
if (bytes == 0)
{
ec = asio::error::eof;
return true;
}
// Check if operation succeeded.
if (bytes > 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
std::size_t sync_write(int d, state_type state, const buf* bufs,
std::size_t count, bool all_empty, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to write 0 bytes on a stream is a no-op.
if (all_empty)
{
ec.assign(0, ec.category());
return 0;
}
// Write some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = ::writev(d, bufs, static_cast<int>(count));
get_last_error(ec, bytes < 0);
// Check if operation succeeded.
if (bytes > 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_write(d, 0, ec) < 0)
return 0;
}
}
std::size_t sync_write1(int d, state_type state, const void* data,
std::size_t size, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return 0;
}
// A request to write 0 bytes on a stream is a no-op.
if (size == 0)
{
ec.assign(0, ec.category());
return 0;
}
// Write some data.
for (;;)
{
// Try to complete the operation without blocking.
signed_size_type bytes = ::write(d, data, size);
get_last_error(ec, bytes < 0);
// Check if operation succeeded.
if (bytes > 0)
return bytes;
// Operation failed.
if ((state & user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for descriptor to become ready.
if (descriptor_ops::poll_write(d, 0, ec) < 0)
return 0;
}
}
bool non_blocking_write(int d, const buf* bufs, std::size_t count,
asio::error_code& ec, std::size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
signed_size_type bytes = ::writev(d, bufs, static_cast<int>(count));
get_last_error(ec, bytes < 0);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
bool non_blocking_write1(int d, const void* data, std::size_t size,
asio::error_code& ec, std::size_t& bytes_transferred)
{
for (;;)
{
// Write some data.
signed_size_type bytes = ::write(d, data, size);
get_last_error(ec, bytes < 0);
// Check if operation succeeded.
if (bytes >= 0)
{
bytes_transferred = bytes;
return true;
}
// Retry operation if interrupted by signal.
if (ec == asio::error::interrupted)
continue;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
// Operation failed.
bytes_transferred = 0;
return true;
}
}
int ioctl(int d, state_type& state, long cmd,
ioctl_arg_type* arg, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
int result = ::ioctl(d, cmd, arg);
get_last_error(ec, result < 0);
if (result >= 0)
{
// When updating the non-blocking mode we always perform the ioctl syscall,
// even if the flags would otherwise indicate that the descriptor is
// already in the correct state. This ensures that the underlying
// descriptor is put into the state that has been requested by the user. If
// the ioctl syscall was successful then we need to update the flags to
// match.
if (cmd == static_cast<long>(FIONBIO))
{
if (*arg)
{
state |= user_set_non_blocking;
}
else
{
// Clearing the non-blocking mode always overrides any internally-set
// non-blocking flag. Any subsequent asynchronous operations will need
// to re-enable non-blocking I/O.
state &= ~(user_set_non_blocking | internal_non_blocking);
}
}
}
return result;
}
int fcntl(int d, int cmd, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
int result = ::fcntl(d, cmd);
get_last_error(ec, result < 0);
return result;
}
int fcntl(int d, int cmd, long arg, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
int result = ::fcntl(d, cmd, arg);
get_last_error(ec, result < 0);
return result;
}
int poll_read(int d, state_type state, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
pollfd fds;
fds.fd = d;
fds.events = POLLIN;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : -1;
int result = ::poll(&fds, 1, timeout);
get_last_error(ec, result < 0);
if (result == 0)
if (state & user_set_non_blocking)
ec = asio::error::would_block;
return result;
}
int poll_write(int d, state_type state, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
pollfd fds;
fds.fd = d;
fds.events = POLLOUT;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : -1;
int result = ::poll(&fds, 1, timeout);
get_last_error(ec, result < 0);
if (result == 0)
if (state & user_set_non_blocking)
ec = asio::error::would_block;
return result;
}
int poll_error(int d, state_type state, asio::error_code& ec)
{
if (d == -1)
{
ec = asio::error::bad_descriptor;
return -1;
}
pollfd fds;
fds.fd = d;
fds.events = POLLPRI | POLLERR | POLLHUP;
fds.revents = 0;
int timeout = (state & user_set_non_blocking) ? 0 : -1;
int result = ::poll(&fds, 1, timeout);
get_last_error(ec, result < 0);
if (result == 0)
if (state & user_set_non_blocking)
ec = asio::error::would_block;
return result;
}
} // namespace descriptor_ops
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // !defined(ASIO_WINDOWS)
// && !defined(ASIO_WINDOWS_RUNTIME)
// && !defined(__CYGWIN__)
#endif // ASIO_DETAIL_IMPL_DESCRIPTOR_OPS_IPP

View File

@ -1,91 +0,0 @@
//
// detail/impl/dev_poll_reactor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_DEV_POLL_REACTOR_HPP
#define ASIO_DETAIL_IMPL_DEV_POLL_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_DEV_POLL)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Time_Traits>
void dev_poll_reactor::add_timer_queue(timer_queue<Time_Traits>& queue)
{
do_add_timer_queue(queue);
}
template <typename Time_Traits>
void dev_poll_reactor::remove_timer_queue(timer_queue<Time_Traits>& queue)
{
do_remove_timer_queue(queue);
}
template <typename Time_Traits>
void dev_poll_reactor::schedule_timer(timer_queue<Time_Traits>& queue,
const typename Time_Traits::time_type& time,
typename timer_queue<Time_Traits>::per_timer_data& timer, wait_op* op)
{
asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
{
scheduler_.post_immediate_completion(op, false);
return;
}
bool earliest = queue.enqueue_timer(time, timer, op);
scheduler_.work_started();
if (earliest)
interrupter_.interrupt();
}
template <typename Time_Traits>
std::size_t dev_poll_reactor::cancel_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& timer,
std::size_t max_cancelled)
{
asio::detail::mutex::scoped_lock lock(mutex_);
op_queue<operation> ops;
std::size_t n = queue.cancel_timer(timer, ops, max_cancelled);
lock.unlock();
scheduler_.post_deferred_completions(ops);
return n;
}
template <typename Time_Traits>
void dev_poll_reactor::move_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& target,
typename timer_queue<Time_Traits>::per_timer_data& source)
{
asio::detail::mutex::scoped_lock lock(mutex_);
op_queue<operation> ops;
queue.cancel_timer(target, ops);
queue.move_timer(target, source);
lock.unlock();
scheduler_.post_deferred_completions(ops);
}
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_DEV_POLL)
#endif // ASIO_DETAIL_IMPL_DEV_POLL_REACTOR_HPP

View File

@ -1,446 +0,0 @@
//
// detail/impl/dev_poll_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_DEV_POLL_REACTOR_IPP
#define ASIO_DETAIL_IMPL_DEV_POLL_REACTOR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_DEV_POLL)
#include "asio/detail/dev_poll_reactor.hpp"
#include "asio/detail/assert.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
dev_poll_reactor::dev_poll_reactor(asio::execution_context& ctx)
: asio::detail::execution_context_service_base<dev_poll_reactor>(ctx),
scheduler_(use_service<scheduler>(ctx)),
mutex_(),
dev_poll_fd_(do_dev_poll_create()),
interrupter_(),
shutdown_(false)
{
// Add the interrupter's descriptor to /dev/poll.
::pollfd ev = { 0, 0, 0 };
ev.fd = interrupter_.read_descriptor();
ev.events = POLLIN | POLLERR;
ev.revents = 0;
::write(dev_poll_fd_, &ev, sizeof(ev));
}
dev_poll_reactor::~dev_poll_reactor()
{
shutdown();
::close(dev_poll_fd_);
}
void dev_poll_reactor::shutdown()
{
asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
op_queue_[i].get_all_operations(ops);
timer_queues_.get_all_timers(ops);
scheduler_.abandon_operations(ops);
}
void dev_poll_reactor::notify_fork(
asio::execution_context::fork_event fork_ev)
{
if (fork_ev == asio::execution_context::fork_child)
{
detail::mutex::scoped_lock lock(mutex_);
if (dev_poll_fd_ != -1)
::close(dev_poll_fd_);
dev_poll_fd_ = -1;
dev_poll_fd_ = do_dev_poll_create();
interrupter_.recreate();
// Add the interrupter's descriptor to /dev/poll.
::pollfd ev = { 0, 0, 0 };
ev.fd = interrupter_.read_descriptor();
ev.events = POLLIN | POLLERR;
ev.revents = 0;
::write(dev_poll_fd_, &ev, sizeof(ev));
// Re-register all descriptors with /dev/poll. The changes will be written
// to the /dev/poll descriptor the next time the reactor is run.
for (int i = 0; i < max_ops; ++i)
{
reactor_op_queue<socket_type>::iterator iter = op_queue_[i].begin();
reactor_op_queue<socket_type>::iterator end = op_queue_[i].end();
for (; iter != end; ++iter)
{
::pollfd& pending_ev = add_pending_event_change(iter->first);
pending_ev.events |= POLLERR | POLLHUP;
switch (i)
{
case read_op: pending_ev.events |= POLLIN; break;
case write_op: pending_ev.events |= POLLOUT; break;
case except_op: pending_ev.events |= POLLPRI; break;
default: break;
}
}
}
interrupter_.interrupt();
}
}
void dev_poll_reactor::init_task()
{
scheduler_.init_task();
}
int dev_poll_reactor::register_descriptor(socket_type, per_descriptor_data&)
{
return 0;
}
int dev_poll_reactor::register_internal_descriptor(int op_type,
socket_type descriptor, per_descriptor_data&, reactor_op* op)
{
asio::detail::mutex::scoped_lock lock(mutex_);
op_queue_[op_type].enqueue_operation(descriptor, op);
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLERR | POLLHUP;
switch (op_type)
{
case read_op: ev.events |= POLLIN; break;
case write_op: ev.events |= POLLOUT; break;
case except_op: ev.events |= POLLPRI; break;
default: break;
}
interrupter_.interrupt();
return 0;
}
void dev_poll_reactor::move_descriptor(socket_type,
dev_poll_reactor::per_descriptor_data&,
dev_poll_reactor::per_descriptor_data&)
{
}
void dev_poll_reactor::start_op(int op_type, socket_type descriptor,
dev_poll_reactor::per_descriptor_data&, reactor_op* op,
bool is_continuation, bool allow_speculative)
{
asio::detail::mutex::scoped_lock lock(mutex_);
if (shutdown_)
{
post_immediate_completion(op, is_continuation);
return;
}
if (allow_speculative)
{
if (op_type != read_op || !op_queue_[except_op].has_operation(descriptor))
{
if (!op_queue_[op_type].has_operation(descriptor))
{
if (op->perform())
{
lock.unlock();
scheduler_.post_immediate_completion(op, is_continuation);
return;
}
}
}
}
bool first = op_queue_[op_type].enqueue_operation(descriptor, op);
scheduler_.work_started();
if (first)
{
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLERR | POLLHUP;
if (op_type == read_op
|| op_queue_[read_op].has_operation(descriptor))
ev.events |= POLLIN;
if (op_type == write_op
|| op_queue_[write_op].has_operation(descriptor))
ev.events |= POLLOUT;
if (op_type == except_op
|| op_queue_[except_op].has_operation(descriptor))
ev.events |= POLLPRI;
interrupter_.interrupt();
}
}
void dev_poll_reactor::cancel_ops(socket_type descriptor,
dev_poll_reactor::per_descriptor_data&)
{
asio::detail::mutex::scoped_lock lock(mutex_);
cancel_ops_unlocked(descriptor, asio::error::operation_aborted);
}
void dev_poll_reactor::deregister_descriptor(socket_type descriptor,
dev_poll_reactor::per_descriptor_data&, bool)
{
asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from /dev/poll.
::pollfd& ev = add_pending_event_change(descriptor);
ev.events = POLLREMOVE;
interrupter_.interrupt();
// Cancel any outstanding operations associated with the descriptor.
cancel_ops_unlocked(descriptor, asio::error::operation_aborted);
}
void dev_poll_reactor::deregister_internal_descriptor(
socket_type descriptor, dev_poll_reactor::per_descriptor_data&)
{
asio::detail::mutex::scoped_lock lock(mutex_);
// Remove the descriptor from /dev/poll. Since this function is only called
// during a fork, we can apply the change immediately.
::pollfd ev = { 0, 0, 0 };
ev.fd = descriptor;
ev.events = POLLREMOVE;
ev.revents = 0;
::write(dev_poll_fd_, &ev, sizeof(ev));
// Destroy all operations associated with the descriptor.
op_queue<operation> ops;
asio::error_code ec;
for (int i = 0; i < max_ops; ++i)
op_queue_[i].cancel_operations(descriptor, ops, ec);
}
void dev_poll_reactor::cleanup_descriptor_data(
dev_poll_reactor::per_descriptor_data&)
{
}
void dev_poll_reactor::run(long usec, op_queue<operation>& ops)
{
asio::detail::mutex::scoped_lock lock(mutex_);
// We can return immediately if there's no work to do and the reactor is
// not supposed to block.
if (usec == 0 && op_queue_[read_op].empty() && op_queue_[write_op].empty()
&& op_queue_[except_op].empty() && timer_queues_.all_empty())
return;
// Write the pending event registration changes to the /dev/poll descriptor.
std::size_t events_size = sizeof(::pollfd) * pending_event_changes_.size();
if (events_size > 0)
{
errno = 0;
int result = ::write(dev_poll_fd_,
&pending_event_changes_[0], events_size);
if (result != static_cast<int>(events_size))
{
asio::error_code ec = asio::error_code(
errno, asio::error::get_system_category());
for (std::size_t i = 0; i < pending_event_changes_.size(); ++i)
{
int descriptor = pending_event_changes_[i].fd;
for (int j = 0; j < max_ops; ++j)
op_queue_[j].cancel_operations(descriptor, ops, ec);
}
}
pending_event_changes_.clear();
pending_event_change_index_.clear();
}
// Calculate timeout.
int timeout;
if (usec == 0)
timeout = 0;
else
{
timeout = (usec < 0) ? -1 : ((usec - 1) / 1000 + 1);
timeout = get_timeout(timeout);
}
lock.unlock();
// Block on the /dev/poll descriptor.
::pollfd events[128] = { { 0, 0, 0 } };
::dvpoll dp = { 0, 0, 0 };
dp.dp_fds = events;
dp.dp_nfds = 128;
dp.dp_timeout = timeout;
int num_events = ::ioctl(dev_poll_fd_, DP_POLL, &dp);
lock.lock();
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
int descriptor = events[i].fd;
if (descriptor == interrupter_.read_descriptor())
{
interrupter_.reset();
}
else
{
bool more_reads = false;
bool more_writes = false;
bool more_except = false;
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
if (events[i].events & (POLLPRI | POLLERR | POLLHUP))
more_except =
op_queue_[except_op].perform_operations(descriptor, ops);
else
more_except = op_queue_[except_op].has_operation(descriptor);
if (events[i].events & (POLLIN | POLLERR | POLLHUP))
more_reads = op_queue_[read_op].perform_operations(descriptor, ops);
else
more_reads = op_queue_[read_op].has_operation(descriptor);
if (events[i].events & (POLLOUT | POLLERR | POLLHUP))
more_writes = op_queue_[write_op].perform_operations(descriptor, ops);
else
more_writes = op_queue_[write_op].has_operation(descriptor);
if ((events[i].events & (POLLERR | POLLHUP)) != 0
&& !more_except && !more_reads && !more_writes)
{
// If we have an event and no operations associated with the
// descriptor then we need to delete the descriptor from /dev/poll.
// The poll operation can produce POLLHUP or POLLERR events when there
// is no operation pending, so if we do not remove the descriptor we
// can end up in a tight polling loop.
::pollfd ev = { 0, 0, 0 };
ev.fd = descriptor;
ev.events = POLLREMOVE;
ev.revents = 0;
::write(dev_poll_fd_, &ev, sizeof(ev));
}
else
{
::pollfd ev = { 0, 0, 0 };
ev.fd = descriptor;
ev.events = POLLERR | POLLHUP;
if (more_reads)
ev.events |= POLLIN;
if (more_writes)
ev.events |= POLLOUT;
if (more_except)
ev.events |= POLLPRI;
ev.revents = 0;
int result = ::write(dev_poll_fd_, &ev, sizeof(ev));
if (result != sizeof(ev))
{
asio::error_code ec(errno,
asio::error::get_system_category());
for (int j = 0; j < max_ops; ++j)
op_queue_[j].cancel_operations(descriptor, ops, ec);
}
}
}
}
timer_queues_.get_ready_timers(ops);
}
void dev_poll_reactor::interrupt()
{
interrupter_.interrupt();
}
int dev_poll_reactor::do_dev_poll_create()
{
int fd = ::open("/dev/poll", O_RDWR);
if (fd == -1)
{
asio::error_code ec(errno,
asio::error::get_system_category());
asio::detail::throw_error(ec, "/dev/poll");
}
return fd;
}
void dev_poll_reactor::do_add_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&queue);
}
void dev_poll_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&queue);
}
int dev_poll_reactor::get_timeout(int msec)
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
const int max_msec = 5 * 60 * 1000;
return timer_queues_.wait_duration_msec(
(msec < 0 || max_msec < msec) ? max_msec : msec);
}
void dev_poll_reactor::cancel_ops_unlocked(socket_type descriptor,
const asio::error_code& ec)
{
bool need_interrupt = false;
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
need_interrupt = op_queue_[i].cancel_operations(
descriptor, ops, ec) || need_interrupt;
scheduler_.post_deferred_completions(ops);
if (need_interrupt)
interrupter_.interrupt();
}
::pollfd& dev_poll_reactor::add_pending_event_change(int descriptor)
{
hash_map<int, std::size_t>::iterator iter
= pending_event_change_index_.find(descriptor);
if (iter == pending_event_change_index_.end())
{
std::size_t index = pending_event_changes_.size();
pending_event_changes_.reserve(pending_event_changes_.size() + 1);
pending_event_change_index_.insert(std::make_pair(descriptor, index));
pending_event_changes_.push_back(::pollfd());
pending_event_changes_[index].fd = descriptor;
pending_event_changes_[index].revents = 0;
return pending_event_changes_[index];
}
else
{
return pending_event_changes_[iter->second];
}
}
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_DEV_POLL)
#endif // ASIO_DETAIL_IMPL_DEV_POLL_REACTOR_IPP

View File

@ -1,89 +0,0 @@
//
// detail/impl/epoll_reactor.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_EPOLL_REACTOR_HPP
#define ASIO_DETAIL_IMPL_EPOLL_REACTOR_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#if defined(ASIO_HAS_EPOLL)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
template <typename Time_Traits>
void epoll_reactor::add_timer_queue(timer_queue<Time_Traits>& queue)
{
do_add_timer_queue(queue);
}
template <typename Time_Traits>
void epoll_reactor::remove_timer_queue(timer_queue<Time_Traits>& queue)
{
do_remove_timer_queue(queue);
}
template <typename Time_Traits>
void epoll_reactor::schedule_timer(timer_queue<Time_Traits>& queue,
const typename Time_Traits::time_type& time,
typename timer_queue<Time_Traits>::per_timer_data& timer, wait_op* op)
{
mutex::scoped_lock lock(mutex_);
if (shutdown_)
{
scheduler_.post_immediate_completion(op, false);
return;
}
bool earliest = queue.enqueue_timer(time, timer, op);
scheduler_.work_started();
if (earliest)
update_timeout();
}
template <typename Time_Traits>
std::size_t epoll_reactor::cancel_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& timer,
std::size_t max_cancelled)
{
mutex::scoped_lock lock(mutex_);
op_queue<operation> ops;
std::size_t n = queue.cancel_timer(timer, ops, max_cancelled);
lock.unlock();
scheduler_.post_deferred_completions(ops);
return n;
}
template <typename Time_Traits>
void epoll_reactor::move_timer(timer_queue<Time_Traits>& queue,
typename timer_queue<Time_Traits>::per_timer_data& target,
typename timer_queue<Time_Traits>::per_timer_data& source)
{
mutex::scoped_lock lock(mutex_);
op_queue<operation> ops;
queue.cancel_timer(target, ops);
queue.move_timer(target, source);
lock.unlock();
scheduler_.post_deferred_completions(ops);
}
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_EPOLL)
#endif // ASIO_DETAIL_IMPL_EPOLL_REACTOR_HPP

View File

@ -1,787 +0,0 @@
//
// detail/impl/epoll_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#define ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_EPOLL)
#include <cstddef>
#include <sys/epoll.h>
#include "asio/detail/epoll_reactor.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#if defined(ASIO_HAS_TIMERFD)
# include <sys/timerfd.h>
#endif // defined(ASIO_HAS_TIMERFD)
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
epoll_reactor::epoll_reactor(asio::execution_context& ctx)
: execution_context_service_base<epoll_reactor>(ctx),
scheduler_(use_service<scheduler>(ctx)),
mutex_(ASIO_CONCURRENCY_HINT_IS_LOCKING(
REACTOR_REGISTRATION, scheduler_.concurrency_hint())),
interrupter_(),
epoll_fd_(do_epoll_create()),
timer_fd_(do_timerfd_create()),
shutdown_(false),
registered_descriptors_mutex_(mutex_.enabled())
{
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
interrupter_.interrupt();
// Add the timer descriptor to epoll.
if (timer_fd_ != -1)
{
ev.events = EPOLLIN | EPOLLERR;
ev.data.ptr = &timer_fd_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
}
}
epoll_reactor::~epoll_reactor()
{
if (epoll_fd_ != -1)
close(epoll_fd_);
if (timer_fd_ != -1)
close(timer_fd_);
}
void epoll_reactor::shutdown()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
while (descriptor_state* state = registered_descriptors_.first())
{
for (int i = 0; i < max_ops; ++i)
ops.push(state->op_queue_[i]);
state->shutdown_ = true;
registered_descriptors_.free(state);
}
timer_queues_.get_all_timers(ops);
scheduler_.abandon_operations(ops);
}
void epoll_reactor::notify_fork(
asio::execution_context::fork_event fork_ev)
{
if (fork_ev == asio::execution_context::fork_child)
{
if (epoll_fd_ != -1)
::close(epoll_fd_);
epoll_fd_ = -1;
epoll_fd_ = do_epoll_create();
if (timer_fd_ != -1)
::close(timer_fd_);
timer_fd_ = -1;
timer_fd_ = do_timerfd_create();
interrupter_.recreate();
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
interrupter_.interrupt();
// Add the timer descriptor to epoll.
if (timer_fd_ != -1)
{
ev.events = EPOLLIN | EPOLLERR;
ev.data.ptr = &timer_fd_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
}
update_timeout();
// Re-register all descriptors with epoll.
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
for (descriptor_state* state = registered_descriptors_.first();
state != 0; state = state->next_)
{
ev.events = state->registered_events_;
ev.data.ptr = state;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, state->descriptor_, &ev);
if (result != 0)
{
asio::error_code ec(errno,
asio::error::get_system_category());
asio::detail::throw_error(ec, "epoll re-registration");
}
}
}
}
void epoll_reactor::init_task()
{
scheduler_.init_task();
}
int epoll_reactor::register_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data)
{
descriptor_data = allocate_descriptor_state();
ASIO_HANDLER_REACTOR_REGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
descriptor_data->reactor_ = this;
descriptor_data->descriptor_ = descriptor;
descriptor_data->shutdown_ = false;
for (int i = 0; i < max_ops; ++i)
descriptor_data->try_speculative_[i] = true;
}
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
descriptor_data->registered_events_ = ev.events;
ev.data.ptr = descriptor_data;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
{
if (errno == EPERM)
{
// This file descriptor type is not supported by epoll. However, if it is
// a regular file then operations on it will not block. We will allow
// this descriptor to be used and fail later if an operation on it would
// otherwise require a trip through the reactor.
descriptor_data->registered_events_ = 0;
return 0;
}
return errno;
}
return 0;
}
int epoll_reactor::register_internal_descriptor(
int op_type, socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
{
descriptor_data = allocate_descriptor_state();
ASIO_HANDLER_REACTOR_REGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
descriptor_data->reactor_ = this;
descriptor_data->descriptor_ = descriptor;
descriptor_data->shutdown_ = false;
descriptor_data->op_queue_[op_type].push(op);
for (int i = 0; i < max_ops; ++i)
descriptor_data->try_speculative_[i] = true;
}
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
descriptor_data->registered_events_ = ev.events;
ev.data.ptr = descriptor_data;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
return errno;
return 0;
}
void epoll_reactor::move_descriptor(socket_type,
epoll_reactor::per_descriptor_data& target_descriptor_data,
epoll_reactor::per_descriptor_data& source_descriptor_data)
{
target_descriptor_data = source_descriptor_data;
source_descriptor_data = 0;
}
void epoll_reactor::start_op(int op_type, socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
bool is_continuation, bool allow_speculative)
{
if (!descriptor_data)
{
op->ec_ = asio::error::bad_descriptor;
post_immediate_completion(op, is_continuation);
return;
}
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
{
post_immediate_completion(op, is_continuation);
return;
}
if (descriptor_data->op_queue_[op_type].empty())
{
if (allow_speculative
&& (op_type != read_op
|| descriptor_data->op_queue_[except_op].empty()))
{
if (descriptor_data->try_speculative_[op_type])
{
if (reactor_op::status status = op->perform())
{
if (status == reactor_op::done_and_exhausted)
if (descriptor_data->registered_events_ != 0)
descriptor_data->try_speculative_[op_type] = false;
descriptor_lock.unlock();
scheduler_.post_immediate_completion(op, is_continuation);
return;
}
}
if (descriptor_data->registered_events_ == 0)
{
op->ec_ = asio::error::operation_not_supported;
scheduler_.post_immediate_completion(op, is_continuation);
return;
}
if (op_type == write_op)
{
if ((descriptor_data->registered_events_ & EPOLLOUT) == 0)
{
epoll_event ev = { 0, { 0 } };
ev.events = descriptor_data->registered_events_ | EPOLLOUT;
ev.data.ptr = descriptor_data;
if (epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev) == 0)
{
descriptor_data->registered_events_ |= ev.events;
}
else
{
op->ec_ = asio::error_code(errno,
asio::error::get_system_category());
scheduler_.post_immediate_completion(op, is_continuation);
return;
}
}
}
}
else if (descriptor_data->registered_events_ == 0)
{
op->ec_ = asio::error::operation_not_supported;
scheduler_.post_immediate_completion(op, is_continuation);
return;
}
else
{
if (op_type == write_op)
{
descriptor_data->registered_events_ |= EPOLLOUT;
}
epoll_event ev = { 0, { 0 } };
ev.events = descriptor_data->registered_events_;
ev.data.ptr = descriptor_data;
epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
}
}
descriptor_data->op_queue_[op_type].push(op);
scheduler_.work_started();
}
void epoll_reactor::cancel_ops(socket_type,
epoll_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
scheduler_.post_deferred_completions(ops);
}
void epoll_reactor::deregister_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, bool closing)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
if (closing)
{
// The descriptor will be automatically removed from the epoll set when
// it is closed.
}
else if (descriptor_data->registered_events_ != 0)
{
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
}
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
ASIO_HANDLER_REACTOR_DEREGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
scheduler_.post_deferred_completions(ops);
// Leave descriptor_data set so that it will be freed by the subsequent
// call to cleanup_descriptor_data.
}
else
{
// We are shutting down, so prevent cleanup_descriptor_data from freeing
// the descriptor_data object and let the destructor free it instead.
descriptor_data = 0;
}
}
void epoll_reactor::deregister_internal_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
ops.push(descriptor_data->op_queue_[i]);
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
ASIO_HANDLER_REACTOR_DEREGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
// Leave descriptor_data set so that it will be freed by the subsequent
// call to cleanup_descriptor_data.
}
else
{
// We are shutting down, so prevent cleanup_descriptor_data from freeing
// the descriptor_data object and let the destructor free it instead.
descriptor_data = 0;
}
}
void epoll_reactor::cleanup_descriptor_data(
per_descriptor_data& descriptor_data)
{
if (descriptor_data)
{
free_descriptor_state(descriptor_data);
descriptor_data = 0;
}
}
void epoll_reactor::run(long usec, op_queue<operation>& ops)
{
// This code relies on the fact that the scheduler queues the reactor task
// behind all descriptor operations generated by this function. This means,
// that by the time we reach this point, any previously returned descriptor
// operations have already been dequeued. Therefore it is now safe for us to
// reuse and return them for the scheduler to queue again.
// Calculate timeout. Check the timer queues only if timerfd is not in use.
int timeout;
if (usec == 0)
timeout = 0;
else
{
timeout = (usec < 0) ? -1 : ((usec - 1) / 1000 + 1);
if (timer_fd_ == -1)
{
mutex::scoped_lock lock(mutex_);
timeout = get_timeout(timeout);
}
}
// Block on the epoll descriptor.
epoll_event events[128];
int num_events = epoll_wait(epoll_fd_, events, 128, timeout);
#if defined(ASIO_ENABLE_HANDLER_TRACKING)
// Trace the waiting events.
for (int i = 0; i < num_events; ++i)
{
void* ptr = events[i].data.ptr;
if (ptr == &interrupter_)
{
// Ignore.
}
# if defined(ASIO_HAS_TIMERFD)
else if (ptr == &timer_fd_)
{
// Ignore.
}
# endif // defined(ASIO_HAS_TIMERFD)
else
{
unsigned event_mask = 0;
if ((events[i].events & EPOLLIN) != 0)
event_mask |= ASIO_HANDLER_REACTOR_READ_EVENT;
if ((events[i].events & EPOLLOUT))
event_mask |= ASIO_HANDLER_REACTOR_WRITE_EVENT;
if ((events[i].events & (EPOLLERR | EPOLLHUP)) != 0)
event_mask |= ASIO_HANDLER_REACTOR_ERROR_EVENT;
ASIO_HANDLER_REACTOR_EVENTS((context(),
reinterpret_cast<uintmax_t>(ptr), event_mask));
}
}
#endif // defined(ASIO_ENABLE_HANDLER_TRACKING)
#if defined(ASIO_HAS_TIMERFD)
bool check_timers = (timer_fd_ == -1);
#else // defined(ASIO_HAS_TIMERFD)
bool check_timers = true;
#endif // defined(ASIO_HAS_TIMERFD)
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
void* ptr = events[i].data.ptr;
if (ptr == &interrupter_)
{
// No need to reset the interrupter since we're leaving the descriptor
// in a ready-to-read state and relying on edge-triggered notifications
// to make it so that we only get woken up when the descriptor's epoll
// registration is updated.
#if defined(ASIO_HAS_TIMERFD)
if (timer_fd_ == -1)
check_timers = true;
#else // defined(ASIO_HAS_TIMERFD)
check_timers = true;
#endif // defined(ASIO_HAS_TIMERFD)
}
#if defined(ASIO_HAS_TIMERFD)
else if (ptr == &timer_fd_)
{
check_timers = true;
}
#endif // defined(ASIO_HAS_TIMERFD)
else
{
// The descriptor operation doesn't count as work in and of itself, so we
// don't call work_started() here. This still allows the scheduler to
// stop if the only remaining operations are descriptor operations.
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
if (!ops.is_enqueued(descriptor_data))
{
descriptor_data->set_ready_events(events[i].events);
ops.push(descriptor_data);
}
else
{
descriptor_data->add_ready_events(events[i].events);
}
}
}
if (check_timers)
{
mutex::scoped_lock common_lock(mutex_);
timer_queues_.get_ready_timers(ops);
#if defined(ASIO_HAS_TIMERFD)
if (timer_fd_ != -1)
{
itimerspec new_timeout;
itimerspec old_timeout;
int flags = get_timeout(new_timeout);
timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
}
#endif // defined(ASIO_HAS_TIMERFD)
}
}
void epoll_reactor::interrupt()
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, interrupter_.read_descriptor(), &ev);
}
int epoll_reactor::do_epoll_create()
{
#if defined(EPOLL_CLOEXEC)
int fd = epoll_create1(EPOLL_CLOEXEC);
#else // defined(EPOLL_CLOEXEC)
int fd = -1;
errno = EINVAL;
#endif // defined(EPOLL_CLOEXEC)
if (fd == -1 && (errno == EINVAL || errno == ENOSYS))
{
fd = epoll_create(epoll_size);
if (fd != -1)
::fcntl(fd, F_SETFD, FD_CLOEXEC);
}
if (fd == -1)
{
asio::error_code ec(errno,
asio::error::get_system_category());
asio::detail::throw_error(ec, "epoll");
}
return fd;
}
int epoll_reactor::do_timerfd_create()
{
#if defined(ASIO_HAS_TIMERFD)
# if defined(TFD_CLOEXEC)
int fd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
# else // defined(TFD_CLOEXEC)
int fd = -1;
errno = EINVAL;
# endif // defined(TFD_CLOEXEC)
if (fd == -1 && errno == EINVAL)
{
fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd != -1)
::fcntl(fd, F_SETFD, FD_CLOEXEC);
}
return fd;
#else // defined(ASIO_HAS_TIMERFD)
return -1;
#endif // defined(ASIO_HAS_TIMERFD)
}
epoll_reactor::descriptor_state* epoll_reactor::allocate_descriptor_state()
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
return registered_descriptors_.alloc(ASIO_CONCURRENCY_HINT_IS_LOCKING(
REACTOR_IO, scheduler_.concurrency_hint()));
}
void epoll_reactor::free_descriptor_state(epoll_reactor::descriptor_state* s)
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
registered_descriptors_.free(s);
}
void epoll_reactor::do_add_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&queue);
}
void epoll_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&queue);
}
void epoll_reactor::update_timeout()
{
#if defined(ASIO_HAS_TIMERFD)
if (timer_fd_ != -1)
{
itimerspec new_timeout;
itimerspec old_timeout;
int flags = get_timeout(new_timeout);
timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
return;
}
#endif // defined(ASIO_HAS_TIMERFD)
interrupt();
}
int epoll_reactor::get_timeout(int msec)
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
const int max_msec = 5 * 60 * 1000;
return timer_queues_.wait_duration_msec(
(msec < 0 || max_msec < msec) ? max_msec : msec);
}
#if defined(ASIO_HAS_TIMERFD)
int epoll_reactor::get_timeout(itimerspec& ts)
{
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
ts.it_value.tv_sec = usec / 1000000;
ts.it_value.tv_nsec = usec ? (usec % 1000000) * 1000 : 1;
return usec ? 0 : TFD_TIMER_ABSTIME;
}
#endif // defined(ASIO_HAS_TIMERFD)
struct epoll_reactor::perform_io_cleanup_on_block_exit
{
explicit perform_io_cleanup_on_block_exit(epoll_reactor* r)
: reactor_(r), first_op_(0)
{
}
~perform_io_cleanup_on_block_exit()
{
if (first_op_)
{
// Post the remaining completed operations for invocation.
if (!ops_.empty())
reactor_->scheduler_.post_deferred_completions(ops_);
// A user-initiated operation has completed, but there's no need to
// explicitly call work_finished() here. Instead, we'll take advantage of
// the fact that the scheduler will call work_finished() once we return.
}
else
{
// No user-initiated operations have completed, so we need to compensate
// for the work_finished() call that the scheduler will make once this
// operation returns.
reactor_->scheduler_.compensating_work_started();
}
}
epoll_reactor* reactor_;
op_queue<operation> ops_;
operation* first_op_;
};
epoll_reactor::descriptor_state::descriptor_state(bool locking)
: operation(&epoll_reactor::descriptor_state::do_complete),
mutex_(locking)
{
}
operation* epoll_reactor::descriptor_state::perform_io(uint32_t events)
{
mutex_.lock();
perform_io_cleanup_on_block_exit io_cleanup(reactor_);
mutex::scoped_lock descriptor_lock(mutex_, mutex::scoped_lock::adopt_lock);
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
static const int flag[max_ops] = { EPOLLIN, EPOLLOUT, EPOLLPRI };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events & (flag[j] | EPOLLERR | EPOLLHUP))
{
try_speculative_[j] = true;
while (reactor_op* op = op_queue_[j].front())
{
if (reactor_op::status status = op->perform())
{
op_queue_[j].pop();
io_cleanup.ops_.push(op);
if (status == reactor_op::done_and_exhausted)
{
try_speculative_[j] = false;
break;
}
}
else
break;
}
}
}
// The first operation will be returned for completion now. The others will
// be posted for later by the io_cleanup object's destructor.
io_cleanup.first_op_ = io_cleanup.ops_.front();
io_cleanup.ops_.pop();
return io_cleanup.first_op_;
}
void epoll_reactor::descriptor_state::do_complete(
void* owner, operation* base,
const asio::error_code& ec, std::size_t bytes_transferred)
{
if (owner)
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(base);
uint32_t events = static_cast<uint32_t>(bytes_transferred);
if (operation* op = descriptor_data->perform_io(events))
{
op->complete(owner, ec, 0);
}
}
}
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_EPOLL)
#endif // ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP

View File

@ -1,171 +0,0 @@
//
// detail/impl/eventfd_select_interrupter.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2008 Roelof Naude (roelof.naude at gmail dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_IMPL_EVENTFD_SELECT_INTERRUPTER_IPP
#define ASIO_DETAIL_IMPL_EVENTFD_SELECT_INTERRUPTER_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/config.hpp"
#if defined(ASIO_HAS_EVENTFD)
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 8 && !defined(__UCLIBC__)
# include <asm/unistd.h>
#else // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8 && !defined(__UCLIBC__)
# include <sys/eventfd.h>
#endif // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8 && !defined(__UCLIBC__)
#include "asio/detail/cstdint.hpp"
#include "asio/detail/eventfd_select_interrupter.hpp"
#include "asio/detail/throw_error.hpp"
#include "asio/error.hpp"
#include "asio/detail/push_options.hpp"
namespace asio {
namespace detail {
eventfd_select_interrupter::eventfd_select_interrupter()
{
open_descriptors();
}
void eventfd_select_interrupter::open_descriptors()
{
#if __GLIBC__ == 2 && __GLIBC_MINOR__ < 8 && !defined(__UCLIBC__)
write_descriptor_ = read_descriptor_ = syscall(__NR_eventfd, 0);
if (read_descriptor_ != -1)
{
::fcntl(read_descriptor_, F_SETFL, O_NONBLOCK);
::fcntl(read_descriptor_, F_SETFD, FD_CLOEXEC);
}
#else // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8 && !defined(__UCLIBC__)
# if defined(EFD_CLOEXEC) && defined(EFD_NONBLOCK)
write_descriptor_ = read_descriptor_ =
::eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
# else // defined(EFD_CLOEXEC) && defined(EFD_NONBLOCK)
errno = EINVAL;
write_descriptor_ = read_descriptor_ = -1;
# endif // defined(EFD_CLOEXEC) && defined(EFD_NONBLOCK)
if (read_descriptor_ == -1 && errno == EINVAL)
{
write_descriptor_ = read_descriptor_ = ::eventfd(0, 0);
if (read_descriptor_ != -1)
{
::fcntl(read_descriptor_, F_SETFL, O_NONBLOCK);
::fcntl(read_descriptor_, F_SETFD, FD_CLOEXEC);
}
}
#endif // __GLIBC__ == 2 && __GLIBC_MINOR__ < 8 && !defined(__UCLIBC__)
if (read_descriptor_ == -1)
{
int pipe_fds[2];
if (pipe(pipe_fds) == 0)
{
read_descriptor_ = pipe_fds[0];
::fcntl(read_descriptor_, F_SETFL, O_NONBLOCK);
::fcntl(read_descriptor_, F_SETFD, FD_CLOEXEC);
write_descriptor_ = pipe_fds[1];
::fcntl(write_descriptor_, F_SETFL, O_NONBLOCK);
::fcntl(write_descriptor_, F_SETFD, FD_CLOEXEC);
}
else
{
asio::error_code ec(errno,
asio::error::get_system_category());
asio::detail::throw_error(ec, "eventfd_select_interrupter");
}
}
}
eventfd_select_interrupter::~eventfd_select_interrupter()
{
close_descriptors();
}
void eventfd_select_interrupter::close_descriptors()
{
if (write_descriptor_ != -1 && write_descriptor_ != read_descriptor_)
::close(write_descriptor_);
if (read_descriptor_ != -1)
::close(read_descriptor_);
}
void eventfd_select_interrupter::recreate()
{
close_descriptors();
write_descriptor_ = -1;
read_descriptor_ = -1;
open_descriptors();
}
void eventfd_select_interrupter::interrupt()
{
uint64_t counter(1UL);
int result = ::write(write_descriptor_, &counter, sizeof(uint64_t));
(void)result;
}
bool eventfd_select_interrupter::reset()
{
if (write_descriptor_ == read_descriptor_)
{
for (;;)
{
// Only perform one read. The kernel maintains an atomic counter.
uint64_t counter(0);
errno = 0;
int bytes_read = ::read(read_descriptor_, &counter, sizeof(uint64_t));
if (bytes_read < 0 && errno == EINTR)
continue;
return true;
}
}
else
{
for (;;)
{
// Clear all data from the pipe.
char data[1024];
int bytes_read = ::read(read_descriptor_, data, sizeof(data));
if (bytes_read == sizeof(data))
continue;
if (bytes_read > 0)
return true;
if (bytes_read == 0)
return false;
if (errno == EINTR)
continue;
if (errno == EWOULDBLOCK)
return true;
if (errno == EAGAIN)
return true;
return false;
}
}
}
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // defined(ASIO_HAS_EVENTFD)
#endif // ASIO_DETAIL_IMPL_EVENTFD_SELECT_INTERRUPTER_IPP

Some files were not shown because too many files have changed in this diff Show More