use crate::dynamic_data::choices::TurnChoice; use crate::dynamic_data::script_handling::ScriptSource; use crate::dynamic_data::Pokemon; use crate::{script_hook, PkmnError, VecExt}; use anyhow::Result; use anyhow_ext::anyhow; use parking_lot::lock_api::MappedRwLockReadGuard; use parking_lot::{RawRwLock, RwLock, RwLockReadGuard}; use std::sync::atomic::{AtomicUsize, Ordering}; use std::sync::Arc; /// The ChoiceQueue is used to run choices one by one. /// /// It functions internally by holding a vector of choices, and passing ownership of the turn choice /// to the turn executor one by one, replacing it with empty spots at the start. It holds several /// helper functions to change the turn order while doing the execution. This is needed, as several /// moves in Pokemon actively mess with this order. #[derive(Debug)] pub struct ChoiceQueue { /// Our storage of turn choices. Starts out completely filled, then slowly empties as turns get /// executed. queue: RwLock>>>, /// The current index of the turn we need to execute next. current: AtomicUsize, } impl ChoiceQueue { /// Initializes a ChoiceQueue, and sort the choices. pub(crate) fn new(mut queue: Vec>>) -> Self { queue.sort_unstable_by(|a, b| b.cmp(a)); Self { queue: RwLock::new(queue), current: AtomicUsize::new(0), } } /// Dequeues the next turn choice to be executed. This gives ownership to the callee, and replaces /// our own reference to the turn choice with an empty spot. It also increments the current position /// by one. pub fn dequeue(&self) -> Result>> { let mut write_lock = self.queue.write(); if self.current.load(Ordering::Relaxed) >= write_lock.len() { return Ok(None); } let c = write_lock .get_mut(self.current.load(Ordering::Relaxed)) .ok_or(anyhow!("Unable to get current turn choice"))? .take(); self.current.fetch_add(1, Ordering::Relaxed); Ok(c) } /// This reads what the next choice to execute will be, without modifying state. pub fn peek(&self) -> Result>>> { let read_lock = self.queue.read(); if self.current.load(Ordering::Relaxed) >= read_lock.len() { Ok(None) } else { let v = RwLockReadGuard::try_map(read_lock, |a| match a.get(self.current.load(Ordering::Relaxed)) { Some(Some(v)) => Some(v), _ => None, }); match v { Ok(v) => Ok(Some(v)), Err(_) => Err(anyhow!("Could not map choice")), } } } /// Check if we have any choices remaining. pub fn has_next(&self) -> bool { self.current.load(Ordering::Relaxed) < self.queue.read().len() } /// This resorts the yet to be executed choices. This can be useful for dealing with situations /// such as Pokemon changing forms just after the very start of a turn, when turn order has /// technically already been decided. pub fn resort(&mut self) -> Result<()> { let len = self.queue.read().len(); let mut write_lock = self.queue.write(); for index in self.current.load(Ordering::Relaxed)..len { let choice = &mut write_lock.get_mut_res(index)?; if let Some(choice) = choice { let mut speed = choice.user().boosted_stats().speed(); script_hook!(change_speed, (*choice), choice, &mut speed); choice.set_speed(speed) } } write_lock .get_mut(self.current.load(Ordering::Relaxed)..len) .ok_or(PkmnError::IndexOutOfBounds { index: self.current.load(Ordering::Relaxed), len, })? .sort_unstable_by(|a, b| b.cmp(a)); Ok(()) } /// This moves the choice of a specific Pokemon up to the next choice to be executed. pub fn move_pokemon_choice_next(&self, pokemon: &Pokemon) -> Result { let mut queue_lock = self.queue.write(); let mut desired_index = None; // Find the index for the choice we want to move up. for index in self.current.load(Ordering::Relaxed)..queue_lock.len() { if let Some(Some(choice)) = &queue_lock.get(index) { if pokemon.eq(choice.user()) { desired_index = Some(index); break; } } } let result = match desired_index { Some(desired_index) => { // If the choice we want to move up is already the next choice, just return. if desired_index == self.current.load(Ordering::Relaxed) { return Ok(true); } // Take the choice we want to move forward out of it's place. let choice = queue_lock .get_mut_res(desired_index)? .take() .ok_or(anyhow!("Choice was already taken"))?; // Iterate backwards from the spot before the choice we want to move up, push them all back // by 1 spot. let current = self.current.load(Ordering::Relaxed); for index in (current..desired_index).rev() { queue_lock.swap(index, index + 1); } // Place the choice that needs to be next in the next to be executed position. let _ = queue_lock .get_mut_res(self.current.load(Ordering::Relaxed))? .insert(choice); true } None => false, }; Ok(result) } /// Internal helper function to be easily able to iterate over the yet to be executed choices. pub(crate) fn get_queue(&self) -> Result>]>> { let read_lock = self.queue.read(); match RwLockReadGuard::try_map(read_lock, |a| { a.get(self.current.load(Ordering::Relaxed)..self.queue.read().len()) }) { Ok(v) => Ok(v), Err(_) => Err(PkmnError::IndexOutOfBounds { index: self.current.load(Ordering::Relaxed), len: self.queue.read().len(), } .into()), } } } #[cfg(test)] #[allow(clippy::unwrap_used)] #[allow(clippy::indexing_slicing)] mod tests { use super::*; use crate::defines::LevelInt; use crate::dynamic_data::{DynamicLibrary, PassChoice}; use crate::static_data::{AbilityIndex, Gender}; use std::sync::Arc; #[test] fn create_empty_queue() { let queue = ChoiceQueue::new(Vec::new()); assert!(!queue.has_next()); assert!(queue.peek().unwrap().is_none()); } #[test] fn dequeue_from_empty_queue() { let queue = ChoiceQueue::new(Vec::new()); assert!(queue.dequeue().unwrap().is_none()); } fn get_user(level: LevelInt) -> Pokemon { let lib = Arc::new(crate::dynamic_data::libraries::dynamic_library::test::build()); let species = lib.static_data().species().get(&"foo".into()).unwrap(); let form = species.get_form(&"default".into()).unwrap(); Pokemon::new( lib, species, &form, AbilityIndex { hidden: false, index: 0, }, level, 0, Gender::Male, 0, &"test_nature".into(), ) .unwrap() } #[test] fn create_queue_with_single_item() { let user = get_user(10); let queue = ChoiceQueue::new(vec![Some(Arc::new(TurnChoice::Pass(PassChoice::new(user))))]); assert!(queue.has_next()); assert!(queue.peek().unwrap().is_some()); assert_eq!(7, queue.peek().unwrap().unwrap().speed()); } #[test] fn dequeue_from_queue_with_single_item() { let user = get_user(10); let queue = ChoiceQueue::new(vec![Some(Arc::new(TurnChoice::Pass(PassChoice::new(user))))]); assert!(queue.has_next()); assert_eq!(7, queue.dequeue().unwrap().unwrap().speed()); assert!(!queue.has_next()); assert!(queue.peek().unwrap().is_none()); } #[test] fn create_queue_with_two_items_with_equal_order() { let user1 = get_user(10); let user2 = get_user(10); let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1)))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2)))), ]); assert!(queue.has_next()); assert!(queue.peek().unwrap().is_some()); assert_eq!(7, queue.peek().unwrap().unwrap().speed()); } #[test] fn create_queue_with_two_items_get_queue() { let user1 = get_user(10); let user2 = get_user(5); let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1.clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2)))), ]); let inner_queue = queue.get_queue().unwrap(); assert_eq!(inner_queue[0].as_ref().unwrap().user().clone(), user1); } #[test] fn create_queue_with_two_items_in_wrong_order_sorts_correctly() { let user1 = get_user(5); let user2 = get_user(100); let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1)))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2)))), ]); assert_eq!(25, queue.dequeue().unwrap().unwrap().speed()); assert_eq!(6, queue.dequeue().unwrap().unwrap().speed()); } #[test] fn resort_with_two_choices() { let user1 = get_user(50); let user2 = get_user(1); let mut queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1.clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2.clone())))), ]); user2.change_level_by(60).unwrap(); assert_eq!(user1, queue.peek().unwrap().unwrap().user().clone(),); queue.resort().unwrap(); assert_eq!(user2, queue.peek().unwrap().unwrap().user().clone(),); } #[test] fn move_pokemon_choice_first_with_two_choices() { let user1 = get_user(100); let user2 = get_user(1); let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1.clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2.clone())))), ]); assert_eq!(user1, queue.peek().unwrap().unwrap().user().clone(),); assert!(queue.move_pokemon_choice_next(&user2).unwrap()); assert_eq!(user2, queue.dequeue().unwrap().unwrap().user().clone(),); assert_eq!(user1, queue.dequeue().unwrap().unwrap().user().clone(),); } #[test] fn move_pokemon_choice_first_when_choice_has_already_been() { let user1 = get_user(10); let user2 = get_user(100); let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1.clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2.clone())))), ]); assert_eq!(user2, queue.dequeue().unwrap().unwrap().user().clone(),); assert!(!queue.move_pokemon_choice_next(&user2).unwrap()); assert_eq!(user1, queue.dequeue().unwrap().unwrap().user().clone(),); assert!(queue.peek().unwrap().is_none()) } #[test] fn move_pokemon_choice_first_when_choice_is_next() { let user1 = get_user(100); let user2 = get_user(10); let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(user1.clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(user2)))), ]); assert_eq!(user1, queue.peek().unwrap().unwrap().user().clone(),); assert!(queue.move_pokemon_choice_next(&user1).unwrap()); assert_eq!(user1, queue.peek().unwrap().unwrap().user().clone(),); } #[test] fn move_pokemon_choice_first_with_seven_choices() { let users = [ get_user(100), get_user(90), get_user(80), get_user(70), get_user(60), get_user(50), get_user(40), ]; let queue = ChoiceQueue::new(vec![ Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[0].clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[1].clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[2].clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[3].clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[4].clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[5].clone())))), Some(Arc::new(TurnChoice::Pass(PassChoice::new(users[6].clone())))), ]); assert_eq!(users[0], queue.peek().unwrap().unwrap().user().clone(),); assert!(queue.move_pokemon_choice_next(&users[4]).unwrap()); assert_eq!(users[4], queue.dequeue().unwrap().unwrap().user().clone(),); for index in 0..4 { assert_eq!(users[index], queue.dequeue().unwrap().unwrap().user().clone(),); } for index in 5..7 { assert_eq!(users[index], queue.dequeue().unwrap().unwrap().user().clone(),); } } }