/* AngelCode Scripting Library Copyright (c) 2003-2019 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ // // as_scriptengine.cpp // // The implementation of the script engine interface // #include #include "as_config.h" #include "as_scriptengine.h" #include "as_builder.h" #include "as_context.h" #include "as_string_util.h" #include "as_tokenizer.h" #include "as_texts.h" #include "as_module.h" #include "as_callfunc.h" #include "as_generic.h" #include "as_scriptobject.h" #include "as_compiler.h" #include "as_bytecode.h" #include "as_debug.h" BEGIN_AS_NAMESPACE #ifdef AS_PROFILE // Instantiate the profiler once CProfiler g_profiler; #endif extern "C" { AS_API const char * asGetLibraryVersion() { #ifdef _DEBUG return ANGELSCRIPT_VERSION_STRING " DEBUG"; #else return ANGELSCRIPT_VERSION_STRING; #endif } AS_API const char * asGetLibraryOptions() { const char *string = " " // Options #ifdef AS_MAX_PORTABILITY "AS_MAX_PORTABILITY " #endif #ifdef AS_DEBUG "AS_DEBUG " #endif #ifdef AS_NO_CLASS_METHODS "AS_NO_CLASS_METHODS " #endif #ifdef AS_USE_DOUBLE_AS_FLOAT "AS_USE_DOUBLE_AS_FLOAT " #endif #ifdef AS_64BIT_PTR "AS_64BIT_PTR " #endif #ifdef AS_NO_THREADS "AS_NO_THREADS " #endif #ifdef AS_NO_ATOMIC "AS_NO_ATOMIC " #endif #ifdef AS_NO_COMPILER "AS_NO_COMPILER " #endif #ifdef AS_NO_MEMBER_INIT "AS_NO_MEMBER_INIT " #endif #ifdef AS_NO_THISCALL_FUNCTOR_METHOD "AS_NO_THISCALL_FUNCTOR_METHOD " #endif #ifdef AS_NO_EXCEPTIONS "AS_NO_EXCEPTIONS " #endif #ifdef WIP_16BYTE_ALIGN "WIP_16BYTE_ALIGN " #endif #ifdef AS_BIG_ENDIAN "AS_BIG_ENDIAN " #endif // Target system #ifdef AS_WIN "AS_WIN " #endif #ifdef AS_LINUX "AS_LINUX " #endif #ifdef AS_MAC "AS_MAC " #endif #ifdef AS_SUN "AS_SUN " #endif #ifdef AS_BSD "AS_BSD " #endif #ifdef AS_XBOX "AS_XBOX " #endif #ifdef AS_XBOX360 "AS_XBOX360 " #endif #ifdef AS_PSP "AS_PSP " #endif #ifdef AS_PS2 "AS_PS2 " #endif #ifdef AS_PS3 "AS_PS3 " #endif #ifdef AS_PSVITA "AS_PSVITA " #endif #ifdef AS_DC "AS_DC " #endif #ifdef AS_GC "AS_GC " #endif #ifdef AS_WII "AS_WII " #endif #ifdef AS_WIIU "AS_WIIU " #endif #ifdef AS_IPHONE "AS_IPHONE " #endif #ifdef AS_ANDROID "AS_ANDROID " #endif #ifdef AS_HAIKU "AS_HAIKU " #endif #ifdef AS_ILLUMOS "AS_ILLUMOS " #endif #ifdef AS_MARMALADE "AS_MARMALADE " #endif // CPU family #ifdef AS_PPC "AS_PPC " #endif #ifdef AS_PPC_64 "AS_PPC_64 " #endif #ifdef AS_X86 "AS_X86 " #endif #ifdef AS_MIPS "AS_MIPS " #endif #ifdef AS_SH4 "AS_SH4 " #endif #ifdef AS_XENON "AS_XENON " #endif #ifdef AS_ARM "AS_ARM " #endif #ifdef AS_SOFTFP "AS_SOFTFP " #endif #ifdef AS_X64_GCC "AS_X64_GCC " #endif #ifdef AS_X64_MSVC "AS_X64_MSVC " #endif #ifdef AS_SPARC "AS_SPARC " #endif ; return string; } AS_API asIScriptEngine *asCreateScriptEngine(asDWORD version) { // Verify the version that the application expects if( (version/10000) != (ANGELSCRIPT_VERSION/10000) ) return 0; if( (version/100)%100 != (ANGELSCRIPT_VERSION/100)%100 ) return 0; if( (version%100) > (ANGELSCRIPT_VERSION%100) ) return 0; // Verify the size of the types asASSERT( sizeof(asBYTE) == 1 ); asASSERT( sizeof(asWORD) == 2 ); asASSERT( sizeof(asDWORD) == 4 ); asASSERT( sizeof(asQWORD) == 8 ); asASSERT( sizeof(asPWORD) == sizeof(void*) ); // Verify the boolean type asASSERT( sizeof(bool) == AS_SIZEOF_BOOL ); asASSERT( true == VALUE_OF_BOOLEAN_TRUE ); // Verify endianess #ifdef AS_BIG_ENDIAN asDWORD dw = 0x00010203; asQWORD qw = ((asQWORD(0x00010203)<<32)|asQWORD(0x04050607)); #else asDWORD dw = 0x03020100; // C++ didn't have a standard way of declaring 64bit literal constants until C++11, so // I'm forced to do it like this to avoid compilers warnings when compiling with the full // C++ compliance. asQWORD qw = ((asQWORD(0x07060504)<<32)|asQWORD(0x03020100)); #endif asASSERT( memcmp("\x00\x01\x02\x03", &dw, 4) == 0 ); asASSERT( memcmp("\x00\x01\x02\x03\x04\x05\x06\x07", &qw, 8) == 0 ); UNUSED_VAR(dw); UNUSED_VAR(qw); return asNEW(asCScriptEngine)(); } } // extern "C" // interface int asCScriptEngine::SetEngineProperty(asEEngineProp property, asPWORD value) { switch( property ) { case asEP_ALLOW_UNSAFE_REFERENCES: ep.allowUnsafeReferences = value ? true : false; break; case asEP_OPTIMIZE_BYTECODE: ep.optimizeByteCode = value ? true : false; break; case asEP_COPY_SCRIPT_SECTIONS: ep.copyScriptSections = value ? true : false; break; case asEP_MAX_STACK_SIZE: if( value == 0 ) { // Restore default: no limit and initially size 4KB ep.maximumContextStackSize = 0; } else { // The size is given in bytes, but we only store dwords ep.maximumContextStackSize = (asUINT)value/4; } break; case asEP_INIT_STACK_SIZE: if (value < 4) { // At least one dword ep.initContextStackSize = 1; } else { // The size is given in bytes, but we only store dwords ep.initContextStackSize = (asUINT)value / 4; } break; case asEP_USE_CHARACTER_LITERALS: ep.useCharacterLiterals = value ? true : false; break; case asEP_ALLOW_MULTILINE_STRINGS: ep.allowMultilineStrings = value ? true : false; break; case asEP_ALLOW_IMPLICIT_HANDLE_TYPES: ep.allowImplicitHandleTypes = value ? true : false; break; case asEP_BUILD_WITHOUT_LINE_CUES: ep.buildWithoutLineCues = value ? true : false; break; case asEP_INIT_GLOBAL_VARS_AFTER_BUILD: ep.initGlobalVarsAfterBuild = value ? true : false; break; case asEP_REQUIRE_ENUM_SCOPE: ep.requireEnumScope = value ? true : false; break; case asEP_SCRIPT_SCANNER: if( value <= 1 ) ep.scanner = (int)value; else return asINVALID_ARG; break; case asEP_INCLUDE_JIT_INSTRUCTIONS: ep.includeJitInstructions = value ? true : false; break; case asEP_STRING_ENCODING: if( value <= 1 ) ep.stringEncoding = (int)value; else return asINVALID_ARG; break; case asEP_PROPERTY_ACCESSOR_MODE: if( value <= 3 ) ep.propertyAccessorMode = (int)value; else return asINVALID_ARG; break; case asEP_EXPAND_DEF_ARRAY_TO_TMPL: ep.expandDefaultArrayToTemplate = value ? true : false; break; case asEP_AUTO_GARBAGE_COLLECT: ep.autoGarbageCollect = value ? true : false; break; case asEP_DISALLOW_GLOBAL_VARS: ep.disallowGlobalVars = value ? true : false; break; case asEP_ALWAYS_IMPL_DEFAULT_CONSTRUCT: ep.alwaysImplDefaultConstruct = value ? true : false; break; case asEP_COMPILER_WARNINGS: if( value <= 2 ) ep.compilerWarnings = (int)value; else return asINVALID_ARG; break; case asEP_DISALLOW_VALUE_ASSIGN_FOR_REF_TYPE: ep.disallowValueAssignForRefType = value ? true : false; break; case asEP_ALTER_SYNTAX_NAMED_ARGS: if( value <= 2 ) ep.alterSyntaxNamedArgs = (int)value; else return asINVALID_ARG; break; case asEP_DISABLE_INTEGER_DIVISION: ep.disableIntegerDivision = value ? true : false; break; case asEP_DISALLOW_EMPTY_LIST_ELEMENTS: ep.disallowEmptyListElements = value ? true : false; break; case asEP_PRIVATE_PROP_AS_PROTECTED: ep.privatePropAsProtected = value ? true : false; break; case asEP_ALLOW_UNICODE_IDENTIFIERS: ep.allowUnicodeIdentifiers = value ? true : false; break; case asEP_HEREDOC_TRIM_MODE: if (value <= 2) ep.heredocTrimMode = (int)value; else return asINVALID_ARG; break; case asEP_MAX_NESTED_CALLS: if (value > 0xFFFFFFFF) ep.maxNestedCalls = 0xFFFFFFFF; else ep.maxNestedCalls = (asUINT)value; break; case asEP_GENERIC_CALL_MODE: if (value > 1) ep.genericCallMode = 1; else ep.genericCallMode = (asUINT)value; break; case asEP_INIT_CALL_STACK_SIZE: ep.initCallStackSize = (asUINT)value; break; case asEP_MAX_CALL_STACK_SIZE: ep.maxCallStackSize = (asUINT)value; break; default: return asINVALID_ARG; } return asSUCCESS; } // interface asPWORD asCScriptEngine::GetEngineProperty(asEEngineProp property) const { switch( property ) { case asEP_ALLOW_UNSAFE_REFERENCES: return ep.allowUnsafeReferences; case asEP_OPTIMIZE_BYTECODE: return ep.optimizeByteCode; case asEP_COPY_SCRIPT_SECTIONS: return ep.copyScriptSections; case asEP_MAX_STACK_SIZE: return ep.maximumContextStackSize * 4; case asEP_INIT_STACK_SIZE: return ep.initContextStackSize * 4; case asEP_USE_CHARACTER_LITERALS: return ep.useCharacterLiterals; case asEP_ALLOW_MULTILINE_STRINGS: return ep.allowMultilineStrings; case asEP_ALLOW_IMPLICIT_HANDLE_TYPES: return ep.allowImplicitHandleTypes; case asEP_BUILD_WITHOUT_LINE_CUES: return ep.buildWithoutLineCues; case asEP_INIT_GLOBAL_VARS_AFTER_BUILD: return ep.initGlobalVarsAfterBuild; case asEP_REQUIRE_ENUM_SCOPE: return ep.requireEnumScope; case asEP_SCRIPT_SCANNER: return ep.scanner; case asEP_INCLUDE_JIT_INSTRUCTIONS: return ep.includeJitInstructions; case asEP_STRING_ENCODING: return ep.stringEncoding; case asEP_PROPERTY_ACCESSOR_MODE: return ep.propertyAccessorMode; case asEP_EXPAND_DEF_ARRAY_TO_TMPL: return ep.expandDefaultArrayToTemplate; case asEP_AUTO_GARBAGE_COLLECT: return ep.autoGarbageCollect; case asEP_DISALLOW_GLOBAL_VARS: return ep.disallowGlobalVars; case asEP_ALWAYS_IMPL_DEFAULT_CONSTRUCT: return ep.alwaysImplDefaultConstruct; case asEP_COMPILER_WARNINGS: return ep.compilerWarnings; case asEP_DISALLOW_VALUE_ASSIGN_FOR_REF_TYPE: return ep.disallowValueAssignForRefType; case asEP_ALTER_SYNTAX_NAMED_ARGS: return ep.alterSyntaxNamedArgs; case asEP_DISABLE_INTEGER_DIVISION: return ep.disableIntegerDivision; case asEP_DISALLOW_EMPTY_LIST_ELEMENTS: return ep.disallowEmptyListElements; case asEP_PRIVATE_PROP_AS_PROTECTED: return ep.privatePropAsProtected; case asEP_ALLOW_UNICODE_IDENTIFIERS: return ep.allowUnicodeIdentifiers; case asEP_HEREDOC_TRIM_MODE: return ep.heredocTrimMode; case asEP_MAX_NESTED_CALLS: return ep.maxNestedCalls; case asEP_GENERIC_CALL_MODE: return ep.genericCallMode; case asEP_INIT_CALL_STACK_SIZE: return ep.initCallStackSize; case asEP_MAX_CALL_STACK_SIZE: return ep.maxCallStackSize; default: return 0; } UNREACHABLE_RETURN; } // interface asIScriptFunction *asCScriptEngine::CreateDelegate(asIScriptFunction *func, void *obj) { if( func == 0 || obj == 0 ) return 0; // The function must be a class method asITypeInfo *type = func->GetObjectType(); if( type == 0 ) return 0; // The object type must allow handles if( (type->GetFlags() & asOBJ_REF) == 0 || (type->GetFlags() & (asOBJ_SCOPED | asOBJ_NOHANDLE)) ) return 0; // Create the delegate the same way it would be created by the scripts return AS_NAMESPACE_QUALIFIER CreateDelegate(reinterpret_cast(func), obj); } asCScriptEngine::asCScriptEngine() { asCThreadManager::Prepare(0); shuttingDown = false; inDestructor = false; // Engine properties { ep.allowUnsafeReferences = false; ep.optimizeByteCode = true; ep.copyScriptSections = true; ep.maximumContextStackSize = 0; // no limit ep.initContextStackSize = 1024; // 4KB default init stack size ep.useCharacterLiterals = false; ep.allowMultilineStrings = false; ep.allowImplicitHandleTypes = false; // TODO: optimize: Maybe this should be turned off by default? If a debugger is not used // then this is just slowing down the execution. ep.buildWithoutLineCues = false; ep.initGlobalVarsAfterBuild = true; ep.requireEnumScope = false; ep.scanner = 1; // utf8. 0 = ascii ep.includeJitInstructions = false; ep.stringEncoding = 0; // utf8. 1 = utf16 ep.propertyAccessorMode = 3; // 0 = disable, 1 = app registered only, 2 = app and script created, 3 = flag with 'property' ep.expandDefaultArrayToTemplate = false; ep.autoGarbageCollect = true; ep.disallowGlobalVars = false; ep.alwaysImplDefaultConstruct = false; ep.compilerWarnings = 1; // 0 = no warnings, 1 = warning, 2 = treat as error // TODO: 3.0.0: disallowValueAssignForRefType should be true by default ep.disallowValueAssignForRefType = false; ep.alterSyntaxNamedArgs = 0; // 0 = no alternate syntax, 1 = accept alternate syntax but warn, 2 = accept without warning ep.disableIntegerDivision = false; ep.disallowEmptyListElements = false; ep.privatePropAsProtected = false; ep.allowUnicodeIdentifiers = false; ep.heredocTrimMode = 1; // 0 = never trim, 1 = don't trim on single line, 2 = trim initial and final empty line ep.maxNestedCalls = 100; ep.genericCallMode = 1; // 0 = old (pre 2.33.0) behavior where generic ignored auto handles, 1 = treat handles like in native call ep.initCallStackSize = 10; // 10 levels of calls ep.maxCallStackSize = 0; // 0 = no limit } gc.engine = this; tok.engine = this; refCount.set(1); stringFactory = 0; configFailed = false; isPrepared = false; isBuilding = false; deferValidationOfTemplateTypes = false; lastModule = 0; typeIdSeqNbr = 0; currentGroup = &defaultGroup; defaultAccessMask = 0xFFFFFFFF; // All bits set so that built-in functions/types will be available to all modules msgCallback = 0; jitCompiler = 0; // Create the global namespace defaultNamespace = AddNameSpace(""); requestCtxFunc = 0; returnCtxFunc = 0; ctxCallbackParam = 0; // We must set the namespace in the built-in types explicitly as // this wasn't done by the default constructor. If we do not do // this we will get null pointer access in other parts of the code scriptTypeBehaviours.nameSpace = defaultNamespace; functionBehaviours.nameSpace = defaultNamespace; // Reserve function id 0 for no function scriptFunctions.PushLast(0); // Reserve the first typeIds for the primitive types typeIdSeqNbr = asTYPEID_DOUBLE + 1; // Make sure typeId for the built-in primitives are defined according to asETypeIdFlags asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttVoid, false)) == asTYPEID_VOID ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttBool, false)) == asTYPEID_BOOL ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt8, false)) == asTYPEID_INT8 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt16, false)) == asTYPEID_INT16 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt, false)) == asTYPEID_INT32 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttInt64, false)) == asTYPEID_INT64 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt8, false)) == asTYPEID_UINT8 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt16, false)) == asTYPEID_UINT16 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt, false)) == asTYPEID_UINT32 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttUInt64, false)) == asTYPEID_UINT64 ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttFloat, false)) == asTYPEID_FLOAT ); asASSERT( GetTypeIdFromDataType(asCDataType::CreatePrimitive(ttDouble, false)) == asTYPEID_DOUBLE ); defaultArrayObjectType = 0; RegisterScriptObject(this); RegisterScriptFunction(this); #ifndef AS_NO_EXCEPTIONS translateExceptionCallback = false; #endif } void asCScriptEngine::DeleteDiscardedModules() { // TODO: redesign: Prevent more than one thread from entering this function at the same time. // If a thread is already doing the work for the clean-up the other thread should // simply return, as the first thread will continue. ACQUIRESHARED(engineRWLock); asUINT maxCount = discardedModules.GetLength(); RELEASESHARED(engineRWLock); for( asUINT n = 0; n < maxCount; n++ ) { ACQUIRESHARED(engineRWLock); asCModule *mod = discardedModules[n]; RELEASESHARED(engineRWLock); if( !mod->HasExternalReferences(shuttingDown) ) { asDELETE(mod, asCModule); n--; } ACQUIRESHARED(engineRWLock); // Determine the max count again, since another module may have been discarded during the processing maxCount = discardedModules.GetLength(); RELEASESHARED(engineRWLock); } // Go over the list of global properties, to see if it is possible to clean // up some variables that are no longer referred to by any functions for( asUINT n = 0; n < globalProperties.GetLength(); n++ ) { asCGlobalProperty *prop = globalProperties[n]; if( prop && prop->refCount.get() == 1 ) RemoveGlobalProperty(prop); } } asCScriptEngine::~asCScriptEngine() { // TODO: clean-up: Clean up redundant code inDestructor = true; asASSERT(refCount.get() == 0); // If ShutDown hasn't been called yet do it now if( !shuttingDown ) { AddRef(); ShutDownAndRelease(); } // Unravel the registered interface if( defaultArrayObjectType ) { defaultArrayObjectType->ReleaseInternal(); defaultArrayObjectType = 0; } // Delete the functions for generated template types that may references object types for( asUINT n = 0; n < generatedTemplateTypes.GetLength(); n++ ) { asCObjectType *templateType = generatedTemplateTypes[n]; if( templateType ) templateType->DestroyInternal(); } for( asUINT n = 0; n < listPatternTypes.GetLength(); n++ ) { asCObjectType *type = listPatternTypes[n]; if( type ) type->ReleaseInternal(); } listPatternTypes.SetLength(0); // No script types must have survived asASSERT( sharedScriptTypes.GetLength() == 0 ); // It is allowed to create new references to the engine temporarily while destroying objects // but these references must be release immediately or else something is can go wrong later on if( refCount.get() > 0 ) WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ENGINE_REF_COUNT_ERROR_DURING_SHUTDOWN); mapTypeIdToTypeInfo.EraseAll(); // First remove what is not used, so that other groups can be deleted safely defaultGroup.RemoveConfiguration(this, true); while( configGroups.GetLength() ) { // Delete config groups in the right order asCConfigGroup *grp = configGroups.PopLast(); if( grp ) { grp->RemoveConfiguration(this); asDELETE(grp,asCConfigGroup); } } // Remove what is remaining defaultGroup.RemoveConfiguration(this); // Any remaining objects in templateInstanceTypes is from generated template instances for( asUINT n = 0; n < templateInstanceTypes.GetLength(); n++ ) { asCObjectType *templateType = templateInstanceTypes[n]; if( templateInstanceTypes[n] ) templateType->ReleaseInternal(); } templateInstanceTypes.SetLength(0); asCSymbolTable::iterator it = registeredGlobalProps.List(); for( ; it; it++ ) { RemoveGlobalProperty(*it); (*it)->Release(); } registeredGlobalProps.Clear(); for( asUINT n = 0; n < templateSubTypes.GetLength(); n++ ) { if( templateSubTypes[n] ) { templateSubTypes[n]->DestroyInternal(); templateSubTypes[n]->ReleaseInternal(); } } templateSubTypes.SetLength(0); registeredTypeDefs.SetLength(0); registeredEnums.SetLength(0); registeredObjTypes.SetLength(0); asCSymbolTable::iterator funcIt = registeredGlobalFuncs.List(); for( ; funcIt; funcIt++ ) (*funcIt)->ReleaseInternal(); registeredGlobalFuncs.Clear(); scriptTypeBehaviours.ReleaseAllFunctions(); functionBehaviours.ReleaseAllFunctions(); for( asUINT n = 0; n < scriptFunctions.GetLength(); n++ ) if( scriptFunctions[n] ) { scriptFunctions[n]->DestroyInternal(); // Set the engine pointer to null to signal that the function is no longer part of the engine scriptFunctions[n]->engine = 0; } scriptFunctions.SetLength(0); // Increase the internal ref count for these builtin object types, so the destructor is not called incorrectly scriptTypeBehaviours.AddRefInternal(); functionBehaviours.AddRefInternal(); // Destroy the funcdefs // As funcdefs are shared between modules it shouldn't be a problem to keep the objects until the engine is released for( asUINT n = 0; n < funcDefs.GetLength(); n++ ) if( funcDefs[n] ) { funcDefs[n]->DestroyInternal(); funcDefs[n]->ReleaseInternal(); } funcDefs.SetLength(0); // Free the global properties for( asUINT n = 0; n < globalProperties.GetLength(); n++ ) { asCGlobalProperty *prop = globalProperties[n]; if( prop ) { asASSERT( prop->refCount.get() == 1 ); RemoveGlobalProperty(prop); } } // Free the script section names for( asUINT n = 0; n < scriptSectionNames.GetLength(); n++ ) asDELETE(scriptSectionNames[n],asCString); scriptSectionNames.SetLength(0); // Clean the user data for( asUINT n = 0; n < userData.GetLength(); n += 2 ) { if( userData[n+1] ) { for( asUINT c = 0; c < cleanEngineFuncs.GetLength(); c++ ) if( cleanEngineFuncs[c].type == userData[n] ) cleanEngineFuncs[c].cleanFunc(this); } } // Free namespaces for( asUINT n = 0; n < nameSpaces.GetLength(); n++ ) asDELETE(nameSpaces[n], asSNameSpace); nameSpaces.SetLength(0); asCThreadManager::Unprepare(); } // interface int asCScriptEngine::SetContextCallbacks(asREQUESTCONTEXTFUNC_t requestCtx, asRETURNCONTEXTFUNC_t returnCtx, void *param) { // Both callbacks or neither must be set if( (requestCtx == 0 && returnCtx != 0) || (requestCtx != 0 && returnCtx == 0) ) return asINVALID_ARG; requestCtxFunc = requestCtx; returnCtxFunc = returnCtx; ctxCallbackParam = param; return 0; } // interface asIScriptContext *asCScriptEngine::RequestContext() { if( requestCtxFunc ) { // The return callback must also exist asASSERT( returnCtxFunc ); asIScriptContext *ctx = requestCtxFunc(this, ctxCallbackParam); return ctx; } // As fallback we create a new context return CreateContext(); } // internal asCModule *asCScriptEngine::FindNewOwnerForSharedType(asCTypeInfo *in_type, asCModule *in_mod) { asASSERT( in_type->IsShared() ); if( in_type->module != in_mod) return in_type->module; for( asUINT n = 0; n < scriptModules.GetLength(); n++ ) { // TODO: optimize: If the modules already stored the shared types separately, this would be quicker int foundIdx = -1; asCModule *mod = scriptModules[n]; if( mod == in_type->module ) continue; if( in_type->flags & asOBJ_ENUM ) foundIdx = mod->enumTypes.IndexOf(CastToEnumType(in_type)); else if (in_type->flags & asOBJ_TYPEDEF) foundIdx = mod->typeDefs.IndexOf(CastToTypedefType(in_type)); else if (in_type->flags & asOBJ_FUNCDEF) foundIdx = mod->funcDefs.IndexOf(CastToFuncdefType(in_type)); else if (in_type->flags & asOBJ_TEMPLATE) foundIdx = mod->templateInstances.IndexOf(CastToObjectType(in_type)); else foundIdx = mod->classTypes.IndexOf(CastToObjectType(in_type)); if( foundIdx >= 0 ) { in_type->module = mod; break; } } return in_type->module; } // internal asCModule *asCScriptEngine::FindNewOwnerForSharedFunc(asCScriptFunction *in_func, asCModule *in_mod) { asASSERT( in_func->IsShared() ); asASSERT(!(in_func->funcType & asFUNC_FUNCDEF)); if( in_func->module != in_mod) return in_func->module; for( asUINT n = 0; n < scriptModules.GetLength(); n++ ) { // TODO: optimize: If the modules already stored the shared types separately, this would be quicker int foundIdx = -1; asCModule *mod = scriptModules[n]; if( mod == in_func->module ) continue; foundIdx = mod->scriptFunctions.IndexOf(in_func); if( foundIdx >= 0 ) { in_func->module = mod; break; } } return in_func->module; } // interface void asCScriptEngine::ReturnContext(asIScriptContext *ctx) { if( returnCtxFunc ) { returnCtxFunc(this, ctx, ctxCallbackParam); return; } // As fallback we just release the context if( ctx ) ctx->Release(); } // interface int asCScriptEngine::AddRef() const { asASSERT( refCount.get() > 0 || inDestructor ); return refCount.atomicInc(); } // interface int asCScriptEngine::Release() const { int r = refCount.atomicDec(); if( r == 0 ) { // It is possible that some function will temporarily increment the engine ref count // during clean-up for example while destroying the objects in the garbage collector. if( !inDestructor ) asDELETE(const_cast(this),asCScriptEngine); return 0; } return r; } // interface int asCScriptEngine::ShutDownAndRelease() { // Do a full garbage collection cycle to clean up any object that may still hold on to the engine GarbageCollect(); // Set the flag that the engine is being shutdown now. This will speed up // the process, and will also allow the engine to warn about invalid calls shuttingDown = true; // Clear the context callbacks. If new context's are needed for the clean-up the engine will take care of this itself. // Context callbacks are normally used for pooling contexts, and if we allow new contexts to be created without being // immediately destroyed afterwards it means the engine's refcount will increase. This is turn may cause memory access // violations later on when the pool releases its contexts. SetContextCallbacks(0, 0, 0); // The modules must be deleted first, as they may use // object types from the config groups for( asUINT n = (asUINT)scriptModules.GetLength(); n-- > 0; ) if( scriptModules[n] ) scriptModules[n]->Discard(); scriptModules.SetLength(0); // Do another full garbage collection to destroy the object types/functions // that may have been placed in the gc when destroying the modules GarbageCollect(); // Do another sweep to delete discarded modules, that may not have // been deleted earlier due to still having external references DeleteDiscardedModules(); // If the application hasn't registered GC behaviours for all types // that can form circular references with script types, then there // may still be objects in the GC. gc.ReportAndReleaseUndestroyedObjects(); // Release the engine reference return Release(); } // internal asSNameSpace *asCScriptEngine::AddNameSpace(const char *name) { // First check if it doesn't exist already asSNameSpace *ns = FindNameSpace(name); if( ns ) return ns; ns = asNEW(asSNameSpace); if( ns == 0 ) { // Out of memory return 0; } ns->name = name; nameSpaces.PushLast(ns); return ns; } // internal asSNameSpace *asCScriptEngine::FindNameSpace(const char *name) const { // TODO: optimize: Improve linear search for( asUINT n = 0; n < nameSpaces.GetLength(); n++ ) if( nameSpaces[n]->name == name ) return nameSpaces[n]; return 0; } // interface const char *asCScriptEngine::GetDefaultNamespace() const { return defaultNamespace->name.AddressOf(); } // interface int asCScriptEngine::SetDefaultNamespace(const char *nameSpace) { if( nameSpace == 0 ) return ConfigError(asINVALID_ARG, "SetDefaultNamespace", nameSpace, 0); asCString ns = nameSpace; if( ns != "" ) { // Make sure the namespace is composed of alternating identifier and :: size_t pos = 0; bool expectIdentifier = true; size_t len; eTokenType t = ttIdentifier; for( ; pos < ns.GetLength(); pos += len) { t = tok.GetToken(ns.AddressOf() + pos, ns.GetLength() - pos, &len); if( (expectIdentifier && t != ttIdentifier) || (!expectIdentifier && t != ttScope) ) return ConfigError(asINVALID_DECLARATION, "SetDefaultNamespace", nameSpace, 0); // Make sure parent namespaces are registred in case of nested namespaces if (expectIdentifier) AddNameSpace(ns.SubString(0, pos + len).AddressOf()); expectIdentifier = !expectIdentifier; } // If the namespace ends with :: then strip it off if( t == ttScope ) ns.SetLength(ns.GetLength()-2); } defaultNamespace = AddNameSpace(ns.AddressOf()); return 0; } // interface void *asCScriptEngine::SetUserData(void *data, asPWORD type) { // As a thread might add a new new user data at the same time as another // it is necessary to protect both read and write access to the userData member ACQUIREEXCLUSIVE(engineRWLock); // It is not intended to store a lot of different types of userdata, // so a more complex structure like a associative map would just have // more overhead than a simple array. for( asUINT n = 0; n < userData.GetLength(); n += 2 ) { if( userData[n] == type ) { void *oldData = reinterpret_cast(userData[n+1]); userData[n+1] = reinterpret_cast(data); RELEASEEXCLUSIVE(engineRWLock); return oldData; } } userData.PushLast(type); userData.PushLast(reinterpret_cast(data)); RELEASEEXCLUSIVE(engineRWLock); return 0; } // interface void *asCScriptEngine::GetUserData(asPWORD type) const { // There may be multiple threads reading, but when // setting the user data nobody must be reading. ACQUIRESHARED(engineRWLock); for( asUINT n = 0; n < userData.GetLength(); n += 2 ) { if( userData[n] == type ) { RELEASESHARED(engineRWLock); return reinterpret_cast(userData[n+1]); } } RELEASESHARED(engineRWLock); return 0; } // interface int asCScriptEngine::SetMessageCallback(const asSFuncPtr &callback, void *obj, asDWORD callConv) { msgCallback = true; msgCallbackObj = obj; bool isObj = false; if( (unsigned)callConv == asCALL_GENERIC || (unsigned)callConv == asCALL_THISCALL_OBJFIRST || (unsigned)callConv == asCALL_THISCALL_OBJLAST ) { msgCallback = false; return asNOT_SUPPORTED; } if( (unsigned)callConv >= asCALL_THISCALL ) { isObj = true; if( obj == 0 ) { msgCallback = false; return asINVALID_ARG; } } int r = DetectCallingConvention(isObj, callback, callConv, 0, &msgCallbackFunc); if( r < 0 ) msgCallback = false; return r; } // interface int asCScriptEngine::ClearMessageCallback() { msgCallback = false; return 0; } // interface int asCScriptEngine::WriteMessage(const char *section, int row, int col, asEMsgType type, const char *message) { // Validate input parameters if( section == 0 || message == 0 ) return asINVALID_ARG; // If there is no callback then there's nothing to do if( !msgCallback ) return 0; // If a pre-message has been set, then write that first if( preMessage.isSet ) { asSMessageInfo msg; msg.section = preMessage.scriptname.AddressOf(); msg.row = preMessage.r; msg.col = preMessage.c; msg.type = asMSGTYPE_INFORMATION; msg.message = preMessage.message.AddressOf(); if( msgCallbackFunc.callConv < ICC_THISCALL ) CallGlobalFunction(&msg, msgCallbackObj, &msgCallbackFunc, 0); else CallObjectMethod(msgCallbackObj, &msg, &msgCallbackFunc, 0); preMessage.isSet = false; } // Write the message to the callback asSMessageInfo msg; msg.section = section; msg.row = row; msg.col = col; msg.type = type; msg.message = message; if( msgCallbackFunc.callConv < ICC_THISCALL ) CallGlobalFunction(&msg, msgCallbackObj, &msgCallbackFunc, 0); else CallObjectMethod(msgCallbackObj, &msg, &msgCallbackFunc, 0); return 0; } int asCScriptEngine::SetJITCompiler(asIJITCompiler *compiler) { jitCompiler = compiler; return asSUCCESS; } asIJITCompiler *asCScriptEngine::GetJITCompiler() const { return jitCompiler; } // interface asETokenClass asCScriptEngine::ParseToken(const char *string, size_t stringLength, asUINT *tokenLength) const { if( stringLength == 0 ) stringLength = strlen(string); size_t len; asETokenClass tc; tok.GetToken(string, stringLength, &len, &tc); if( tokenLength ) *tokenLength = (asUINT)len; return tc; } // interface asIScriptModule *asCScriptEngine::GetModule(const char *module, asEGMFlags flag) { asCModule *mod = GetModule(module, false); if( flag == asGM_ALWAYS_CREATE ) { if( mod != 0 ) mod->Discard(); return GetModule(module, true); } if( mod == 0 && flag == asGM_CREATE_IF_NOT_EXISTS ) return GetModule(module, true); return mod; } // interface int asCScriptEngine::DiscardModule(const char *module) { asCModule *mod = GetModule(module, false); if( mod == 0 ) return asNO_MODULE; mod->Discard(); return 0; } // interface asUINT asCScriptEngine::GetModuleCount() const { ACQUIRESHARED(engineRWLock); asUINT length = asUINT(scriptModules.GetLength()); RELEASESHARED(engineRWLock); return length; } // interface asIScriptModule *asCScriptEngine::GetModuleByIndex(asUINT index) const { asIScriptModule *mod = 0; ACQUIRESHARED(engineRWLock); if( index < scriptModules.GetLength() ) mod = scriptModules[index]; RELEASESHARED(engineRWLock); return mod; } // internal int asCScriptEngine::GetFactoryIdByDecl(const asCObjectType *ot, const char *decl) { asCModule *mod = 0; // Is this a script class? if( (ot->flags & asOBJ_SCRIPT_OBJECT) && ot->size > 0 ) mod = scriptFunctions[ot->beh.factories[0]]->module; asCBuilder bld(this, mod); // Don't write parser errors to the message callback bld.silent = true; asCScriptFunction func(this, mod, asFUNC_DUMMY); int r = bld.ParseFunctionDeclaration(0, decl, &func, false, 0, 0, defaultNamespace); if( r < 0 ) return asINVALID_DECLARATION; // Search for matching factory function int id = -1; for( asUINT n = 0; n < ot->beh.factories.GetLength(); n++ ) { asCScriptFunction *f = scriptFunctions[ot->beh.factories[n]]; if( f->IsSignatureEqual(&func) ) { id = ot->beh.factories[n]; break; } } if( id == -1 ) return asNO_FUNCTION; return id; } // internal int asCScriptEngine::GetMethodIdByDecl(const asCObjectType *ot, const char *decl, asCModule *mod) { asCBuilder bld(this, mod); // Don't write parser errors to the message callback bld.silent = true; asCScriptFunction func(this, mod, asFUNC_DUMMY); // Set the object type so that the signature can be properly compared // This cast is OK, it will only be used for comparison func.objectType = const_cast(ot); func.objectType->AddRefInternal(); int r = bld.ParseFunctionDeclaration(func.objectType, decl, &func, false); if( r < 0 ) return asINVALID_DECLARATION; // Search script functions for matching interface int id = -1; for( asUINT n = 0; n < ot->methods.GetLength(); ++n ) { if( func.IsSignatureEqual(scriptFunctions[ot->methods[n]]) ) { if( id == -1 ) id = ot->methods[n]; else return asMULTIPLE_FUNCTIONS; } } if( id == -1 ) return asNO_FUNCTION; return id; } // internal asCString asCScriptEngine::GetFunctionDeclaration(int funcId) { asCString str; asCScriptFunction *func = GetScriptFunction(funcId); if( func ) str = func->GetDeclarationStr(); return str; } // internal asCScriptFunction *asCScriptEngine::GetScriptFunction(int funcId) const { if( funcId < 0 || funcId >= (int)scriptFunctions.GetLength() ) return 0; return scriptFunctions[funcId]; } // interface asIScriptContext *asCScriptEngine::CreateContext() { asIScriptContext *ctx = 0; CreateContext(&ctx, false); return ctx; } // internal int asCScriptEngine::CreateContext(asIScriptContext **context, bool isInternal) { *context = asNEW(asCContext)(this, !isInternal); if( *context == 0 ) return asOUT_OF_MEMORY; // We need to make sure the engine has been // prepared before any context is executed PrepareEngine(); return 0; } // interface int asCScriptEngine::RegisterObjectProperty(const char *obj, const char *declaration, int byteOffset, int compositeOffset, bool isCompositeIndirect) { int r; asCDataType dt; asCBuilder bld(this, 0); r = bld.ParseDataType(obj, &dt, defaultNamespace); if( r < 0 ) return ConfigError(r, "RegisterObjectProperty", obj, declaration); if (dt.GetTypeInfo() == 0 || (dt.IsObjectHandle() && !(dt.GetTypeInfo()->GetFlags() & asOBJ_IMPLICIT_HANDLE))) return ConfigError(asINVALID_OBJECT, "RegisterObjectProperty", obj, declaration); // Don't allow modifying generated template instances if( dt.GetTypeInfo() && (dt.GetTypeInfo()->flags & asOBJ_TEMPLATE) && generatedTemplateTypes.Exists(CastToObjectType(dt.GetTypeInfo())) ) return ConfigError(asINVALID_TYPE, "RegisterObjectProperty", obj, declaration); // Verify that the correct config group is used if( currentGroup->FindType(dt.GetTypeInfo()->name.AddressOf()) == 0 ) return ConfigError(asWRONG_CONFIG_GROUP, "RegisterObjectProperty", obj, declaration); asCDataType type; asCString name; if( (r = bld.VerifyProperty(&dt, declaration, name, type, 0)) < 0 ) return ConfigError(r, "RegisterObjectProperty", obj, declaration); // The VM currently only supports 16bit offsets // TODO: The VM needs to have support for 32bit offsets. Probably with a second ADDSi instruction // However, when implementing this it is necessary for the bytecode serialization to support // the switch between the instructions upon loading bytecode as the offset may not be the // same on all platforms if( byteOffset > 32767 || byteOffset < -32768 ) return ConfigError(asINVALID_ARG, "RegisterObjectProperty", obj, declaration); // The composite offset must also obey the ADDSi restriction if (compositeOffset > 32767 || compositeOffset < -32768) return ConfigError(asINVALID_ARG, "RegisterObjectProperty", obj, declaration); asCObjectProperty *prop = asNEW(asCObjectProperty); if( prop == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterObjectProperty", obj, declaration); prop->name = name; prop->type = type; prop->byteOffset = byteOffset; prop->isPrivate = false; prop->isProtected = false; prop->compositeOffset = compositeOffset; prop->isCompositeIndirect = isCompositeIndirect; prop->accessMask = defaultAccessMask; CastToObjectType(dt.GetTypeInfo())->properties.PushLast(prop); // Add references to types so they are not released too early if( type.GetTypeInfo() ) { type.GetTypeInfo()->AddRefInternal(); // Add template instances to the config group if( (type.GetTypeInfo()->flags & asOBJ_TEMPLATE) && !currentGroup->types.Exists(type.GetTypeInfo()) ) currentGroup->types.PushLast(type.GetTypeInfo()); } currentGroup->AddReferencesForType(this, type.GetTypeInfo()); return asSUCCESS; } // interface int asCScriptEngine::RegisterInterface(const char *name) { if( name == 0 ) return ConfigError(asINVALID_NAME, "RegisterInterface", 0, 0); // Verify if the name has been registered as a type already if( GetRegisteredType(name, defaultNamespace) ) return asALREADY_REGISTERED; // Use builder to parse the datatype asCDataType dt; asCBuilder bld(this, 0); bool oldMsgCallback = msgCallback; msgCallback = false; int r = bld.ParseDataType(name, &dt, defaultNamespace); msgCallback = oldMsgCallback; if( r >= 0 ) { // If it is not in the defaultNamespace then the type was successfully parsed because // it is declared in a parent namespace which shouldn't be treated as an error if( dt.GetTypeInfo() && dt.GetTypeInfo()->nameSpace == defaultNamespace ) return ConfigError(asERROR, "RegisterInterface", name, 0); } // Make sure the name is not a reserved keyword size_t tokenLen; int token = tok.GetToken(name, strlen(name), &tokenLen); if( token != ttIdentifier || strlen(name) != tokenLen ) return ConfigError(asINVALID_NAME, "RegisterInterface", name, 0); r = bld.CheckNameConflict(name, 0, 0, defaultNamespace, true, false); if( r < 0 ) return ConfigError(asNAME_TAKEN, "RegisterInterface", name, 0); // Don't have to check against members of object // types as they are allowed to use the names // Register the object type for the interface asCObjectType *st = asNEW(asCObjectType)(this); if( st == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterInterface", name, 0); st->flags = asOBJ_REF | asOBJ_SCRIPT_OBJECT | asOBJ_SHARED; st->size = 0; // Cannot be instantiated st->name = name; st->nameSpace = defaultNamespace; // Use the default script class behaviours st->beh.factory = 0; st->beh.addref = scriptTypeBehaviours.beh.addref; scriptFunctions[st->beh.addref]->AddRefInternal(); st->beh.release = scriptTypeBehaviours.beh.release; scriptFunctions[st->beh.release]->AddRefInternal(); st->beh.copy = 0; allRegisteredTypes.Insert(asSNameSpaceNamePair(st->nameSpace, st->name), st); registeredObjTypes.PushLast(st); currentGroup->types.PushLast(st); return GetTypeIdByDecl(name); } // interface int asCScriptEngine::RegisterInterfaceMethod(const char *intf, const char *declaration) { // Verify that the correct config group is set. if( currentGroup->FindType(intf) == 0 ) return ConfigError(asWRONG_CONFIG_GROUP, "RegisterInterfaceMethod", intf, declaration); asCDataType dt; asCBuilder bld(this, 0); int r = bld.ParseDataType(intf, &dt, defaultNamespace); if( r < 0 ) return ConfigError(r, "RegisterInterfaceMethod", intf, declaration); asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_INTERFACE); if( func == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterInterfaceMethod", intf, declaration); func->objectType = CastToObjectType(dt.GetTypeInfo()); func->objectType->AddRefInternal(); r = bld.ParseFunctionDeclaration(func->objectType, declaration, func, false); if( r < 0 ) { func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asINVALID_DECLARATION, "RegisterInterfaceMethod", intf, declaration); } // Check name conflicts r = bld.CheckNameConflictMember(dt.GetTypeInfo(), func->name.AddressOf(), 0, 0, false, false); if( r < 0 ) { func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asNAME_TAKEN, "RegisterInterfaceMethod", intf, declaration); } func->id = GetNextScriptFunctionId(); AddScriptFunction(func); // The index into the interface's vftable chunk should be // its index in the methods array. func->vfTableIdx = int(func->objectType->methods.GetLength()); func->objectType->methods.PushLast(func->id); func->ComputeSignatureId(); currentGroup->AddReferencesForFunc(this, func); // Return function id as success return func->id; } int asCScriptEngine::RegisterObjectType(const char *name, int byteSize, asDWORD flags) { int r; isPrepared = false; // Verify flags // Must have either asOBJ_REF or asOBJ_VALUE if( flags & asOBJ_REF ) { // Can optionally have the asOBJ_GC, asOBJ_NOHANDLE, asOBJ_SCOPED, or asOBJ_TEMPLATE flag set, but nothing else if( flags & ~(asOBJ_REF | asOBJ_GC | asOBJ_NOHANDLE | asOBJ_SCOPED | asOBJ_TEMPLATE | asOBJ_NOCOUNT | asOBJ_IMPLICIT_HANDLE) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); // flags are exclusive if( (flags & asOBJ_GC) && (flags & (asOBJ_NOHANDLE|asOBJ_SCOPED|asOBJ_NOCOUNT)) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); if( (flags & asOBJ_NOHANDLE) && (flags & (asOBJ_GC|asOBJ_SCOPED|asOBJ_NOCOUNT|asOBJ_IMPLICIT_HANDLE)) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); if( (flags & asOBJ_SCOPED) && (flags & (asOBJ_GC|asOBJ_NOHANDLE|asOBJ_NOCOUNT|asOBJ_IMPLICIT_HANDLE)) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); if( (flags & asOBJ_NOCOUNT) && (flags & (asOBJ_GC|asOBJ_NOHANDLE|asOBJ_SCOPED)) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); // Implicit handle is only allowed if the engine property for this is turned on if( !ep.allowImplicitHandleTypes && (flags & asOBJ_IMPLICIT_HANDLE) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } else if( flags & asOBJ_VALUE ) { // Cannot use reference flags if( flags & (asOBJ_REF | asOBJ_NOHANDLE | asOBJ_SCOPED | asOBJ_NOCOUNT | asOBJ_IMPLICIT_HANDLE) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); // Flags are exclusive if( (flags & asOBJ_POD) && (flags & (asOBJ_ASHANDLE | asOBJ_TEMPLATE)) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); // If the app type is given, we must validate the flags if( flags & asOBJ_APP_CLASS ) { // Must not set the primitive or float flag if( flags & (asOBJ_APP_PRIMITIVE | asOBJ_APP_FLOAT | asOBJ_APP_ARRAY) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } else { // Must not set the class properties, without the class flag if( flags & (asOBJ_APP_CLASS_CONSTRUCTOR | asOBJ_APP_CLASS_DESTRUCTOR | asOBJ_APP_CLASS_ASSIGNMENT | asOBJ_APP_CLASS_COPY_CONSTRUCTOR | asOBJ_APP_CLASS_ALLINTS | asOBJ_APP_CLASS_ALLFLOATS) ) { return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } } if( flags & asOBJ_APP_PRIMITIVE ) { if( flags & (asOBJ_APP_CLASS | asOBJ_APP_FLOAT | asOBJ_APP_ARRAY) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } else if( flags & asOBJ_APP_FLOAT ) { if( flags & (asOBJ_APP_CLASS | asOBJ_APP_PRIMITIVE | asOBJ_APP_ARRAY) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } else if( flags & asOBJ_APP_ARRAY ) { if( flags & (asOBJ_APP_CLASS | asOBJ_APP_PRIMITIVE | asOBJ_APP_FLOAT) ) return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } } else return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); // Don't allow anything else than the defined flags #ifndef WIP_16BYTE_ALIGN if( flags - (flags & asOBJ_MASK_VALID_FLAGS) ) #else if( flags - (flags & (asOBJ_MASK_VALID_FLAGS | asOBJ_APP_ALIGN16)) ) #endif return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); // Value types must have a defined size if( (flags & asOBJ_VALUE) && byteSize == 0 ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_VALUE_TYPE_MUST_HAVE_SIZE); return ConfigError(asINVALID_ARG, "RegisterObjectType", name, 0); } // Verify type name if( name == 0 ) return ConfigError(asINVALID_NAME, "RegisterObjectType", name, 0); asCString typeName; asCBuilder bld(this, 0); if( flags & asOBJ_TEMPLATE ) { asCArray subtypeNames; r = bld.ParseTemplateDecl(name, &typeName, subtypeNames); if( r < 0 ) return ConfigError(r, "RegisterObjectType", name, 0); // Verify that the template name hasn't been registered as a type already if( GetRegisteredType(typeName, defaultNamespace) ) // This is not an irrepairable error, as it may just be that the same type is registered twice return asALREADY_REGISTERED; asCObjectType *type = asNEW(asCObjectType)(this); if( type == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0); type->name = typeName; type->nameSpace = defaultNamespace; type->size = byteSize; #ifdef WIP_16BYTE_ALIGN // TODO: Types smaller than 4 don't need to be aligned to 4 byte boundaries type->alignment = (flags & asOBJ_APP_ALIGN16) ? 16 : 4; #endif type->flags = flags; type->accessMask = defaultAccessMask; // Store it in the object types allRegisteredTypes.Insert(asSNameSpaceNamePair(type->nameSpace, type->name), type); currentGroup->types.PushLast(type); registeredObjTypes.PushLast(type); registeredTemplateTypes.PushLast(type); // Define the template subtypes for( asUINT subTypeIdx = 0; subTypeIdx < subtypeNames.GetLength(); subTypeIdx++ ) { asCTypeInfo *subtype = 0; for( asUINT n = 0; n < templateSubTypes.GetLength(); n++ ) { if( templateSubTypes[n]->name == subtypeNames[subTypeIdx] ) { subtype = templateSubTypes[n]; break; } } if( subtype == 0 ) { // Create the new subtype if not already existing subtype = asNEW(asCTypeInfo)(this); if( subtype == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0); subtype->name = subtypeNames[subTypeIdx]; subtype->size = 0; subtype->flags = asOBJ_TEMPLATE_SUBTYPE; templateSubTypes.PushLast(subtype); } type->templateSubTypes.PushLast(asCDataType::CreateType(subtype, false)); subtype->AddRefInternal(); } } else { typeName = name; // Verify if the name has been registered as a type already if( GetRegisteredType(typeName, defaultNamespace) ) // This is not an irrepairable error, as it may just be that the same type is registered twice return asALREADY_REGISTERED; // Keep the most recent template generated instance type, so we know what it was before parsing the datatype asCObjectType *mostRecentTemplateInstanceType = 0; asUINT originalSizeOfGeneratedTemplateTypes = (asUINT)generatedTemplateTypes.GetLength(); if( originalSizeOfGeneratedTemplateTypes ) mostRecentTemplateInstanceType = generatedTemplateTypes[originalSizeOfGeneratedTemplateTypes-1]; // Use builder to parse the datatype asCDataType dt; bool oldMsgCallback = msgCallback; msgCallback = false; r = bld.ParseDataType(name, &dt, defaultNamespace); msgCallback = oldMsgCallback; // If the builder fails or the namespace is different than the default // namespace, then the type name is new and it should be registered if( r < 0 || dt.GetTypeInfo()->nameSpace != defaultNamespace ) { // Make sure the name is not a reserved keyword size_t tokenLen; int token = tok.GetToken(name, typeName.GetLength(), &tokenLen); if( token != ttIdentifier || typeName.GetLength() != tokenLen ) return ConfigError(asINVALID_NAME, "RegisterObjectType", name, 0); r = bld.CheckNameConflict(name, 0, 0, defaultNamespace, true, false); if( r < 0 ) return ConfigError(asNAME_TAKEN, "RegisterObjectType", name, 0); // Don't have to check against members of object // types as they are allowed to use the names // Put the data type in the list asCObjectType *type = asNEW(asCObjectType)(this); if( type == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0); type->name = typeName; type->nameSpace = defaultNamespace; type->size = byteSize; #ifdef WIP_16BYTE_ALIGN // TODO: Types smaller than 4 don't need to be aligned to 4 byte boundaries type->alignment = (flags & asOBJ_APP_ALIGN16) ? 16 : 4; #endif type->flags = flags; type->accessMask = defaultAccessMask; allRegisteredTypes.Insert(asSNameSpaceNamePair(type->nameSpace, type->name), type); registeredObjTypes.PushLast(type); currentGroup->types.PushLast(type); } else { // The application is registering a template specialization so we // need to replace the template instance type with the new type. // TODO: Template: We don't require the lower dimensions to be registered first for registered template types // int[][] must not be allowed to be registered // if int[] hasn't been registered first if( dt.GetSubType().IsTemplate() ) return ConfigError(asLOWER_ARRAY_DIMENSION_NOT_REGISTERED, "RegisterObjectType", name, 0); if( dt.IsReadOnly() || dt.IsReference() ) return ConfigError(asINVALID_TYPE, "RegisterObjectType", name, 0); // Was the template instance type generated before? if( generatedTemplateTypes.Exists(CastToObjectType(dt.GetTypeInfo())) && generatedTemplateTypes[generatedTemplateTypes.GetLength()-1] == mostRecentTemplateInstanceType ) { asCString str; str.Format(TXT_TEMPLATE_s_ALREADY_GENERATED_CANT_REGISTER, typeName.AddressOf()); WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); return ConfigError(asNOT_SUPPORTED, "RegisterObjectType", name, 0); } // If this is not a generated template instance type, then it means it is an // already registered template specialization if( !generatedTemplateTypes.Exists(CastToObjectType(dt.GetTypeInfo())) ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectType", name, 0); // TODO: Add this again. The type is used by the factory stubs so we need to discount that // Is the template instance type already being used? // if( dt.GetTypeInfo()->GetRefCount() > 1 ) // return ConfigError(asNOT_SUPPORTED, "RegisterObjectType", name, 0); // Put the data type in the list asCObjectType *type = asNEW(asCObjectType)(this); if( type == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterObjectType", name, 0); type->name = dt.GetTypeInfo()->name; // The namespace will be the same as the original template type type->nameSpace = dt.GetTypeInfo()->nameSpace; type->templateSubTypes.PushLast(dt.GetSubType()); for( asUINT s = 0; s < type->templateSubTypes.GetLength(); s++ ) if( type->templateSubTypes[s].GetTypeInfo() ) type->templateSubTypes[s].GetTypeInfo()->AddRefInternal(); type->size = byteSize; #ifdef WIP_16BYTE_ALIGN // TODO: Types smaller than 4 don't need to be aligned to 4 byte boundaries type->alignment = (flags & asOBJ_APP_ALIGN16) ? 16 : 4; #endif type->flags = flags; type->accessMask = defaultAccessMask; templateInstanceTypes.PushLast(type); currentGroup->types.PushLast(type); // Remove the template instance type, which will no longer be used. // It is possible that multiple template instances are generated if // they have any relationship, so all of them must be removed while( generatedTemplateTypes.GetLength() > originalSizeOfGeneratedTemplateTypes ) RemoveTemplateInstanceType(generatedTemplateTypes[generatedTemplateTypes.GetLength()-1]); } } // Return the type id as the success (except for template types) if( flags & asOBJ_TEMPLATE ) return asSUCCESS; return GetTypeIdByDecl(name); } // interface int asCScriptEngine::RegisterObjectBehaviour(const char *datatype, asEBehaviours behaviour, const char *decl, const asSFuncPtr &funcPointer, asDWORD callConv, void *auxiliary, int compositeOffset, bool isCompositeIndirect) { if( datatype == 0 ) return ConfigError(asINVALID_ARG, "RegisterObjectBehaviour", datatype, decl); // Determine the object type asCBuilder bld(this, 0); asCDataType type; int r = bld.ParseDataType(datatype, &type, defaultNamespace); if( r < 0 ) return ConfigError(r, "RegisterObjectBehaviour", datatype, decl); if( type.GetTypeInfo() == 0 || (type.IsObjectHandle() && !(type.GetTypeInfo()->GetFlags() & asOBJ_IMPLICIT_HANDLE)) ) return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl); // Don't allow application to modify built-in types if( type.GetTypeInfo() == &functionBehaviours || type.GetTypeInfo() == &scriptTypeBehaviours ) return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl); if( type.IsReadOnly() || type.IsReference() ) return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl); // Don't allow modifying generated template instances if( type.GetTypeInfo() && (type.GetTypeInfo()->flags & asOBJ_TEMPLATE) && generatedTemplateTypes.Exists(CastToObjectType(type.GetTypeInfo())) ) return ConfigError(asINVALID_TYPE, "RegisterObjectBehaviour", datatype, decl); return RegisterBehaviourToObjectType(CastToObjectType(type.GetTypeInfo()), behaviour, decl, funcPointer, callConv, auxiliary, compositeOffset, isCompositeIndirect); } // internal int asCScriptEngine::RegisterBehaviourToObjectType(asCObjectType *objectType, asEBehaviours behaviour, const char *decl, const asSFuncPtr &funcPointer, asDWORD callConv, void *auxiliary, int compositeOffset, bool isCompositeIndirect) { #ifdef AS_MAX_PORTABILITY if( callConv != asCALL_GENERIC ) return ConfigError(asNOT_SUPPORTED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); #endif asSSystemFunctionInterface internal; bool isMethod = !(behaviour == asBEHAVE_FACTORY || behaviour == asBEHAVE_LIST_FACTORY || behaviour == asBEHAVE_TEMPLATE_CALLBACK); int r = DetectCallingConvention(isMethod, funcPointer, callConv, auxiliary, &internal); if( r < 0 ) return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); internal.compositeOffset = compositeOffset; internal.isCompositeIndirect = isCompositeIndirect; if( (compositeOffset || isCompositeIndirect) && callConv != asCALL_THISCALL ) return ConfigError(asINVALID_ARG, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // TODO: cleanup: This is identical to what is in RegisterMethodToObjectType // If the object type is a template, make sure there are no generated instances already if( objectType->flags & asOBJ_TEMPLATE ) { for( asUINT n = 0; n < generatedTemplateTypes.GetLength(); n++ ) { asCObjectType *tmpl = generatedTemplateTypes[n]; if( tmpl->name == objectType->name && tmpl->nameSpace == objectType->nameSpace && !(tmpl->templateSubTypes[0].GetTypeInfo() && (tmpl->templateSubTypes[0].GetTypeInfo()->flags & asOBJ_TEMPLATE_SUBTYPE)) ) { asCString msg; msg.Format(TXT_TEMPLATE_s_ALREADY_GENERATED_CANT_REGISTER, asCDataType::CreateType(tmpl, false).Format(tmpl->nameSpace).AddressOf()); WriteMessage("",0,0, asMSGTYPE_ERROR, msg.AddressOf()); return ConfigError(asERROR, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } } } isPrepared = false; asSTypeBehaviour *beh = &objectType->beh; // Verify function declaration asCScriptFunction func(this, 0, asFUNC_DUMMY); bool expectListPattern = behaviour == asBEHAVE_LIST_FACTORY || behaviour == asBEHAVE_LIST_CONSTRUCT; asCScriptNode *listPattern = 0; asCBuilder bld(this, 0); r = bld.ParseFunctionDeclaration(objectType, decl, &func, true, &internal.paramAutoHandles, &internal.returnAutoHandle, 0, expectListPattern ? &listPattern : 0); if( r < 0 ) { if( listPattern ) listPattern->Destroy(this); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } func.name.Format("$beh%d", behaviour); if( behaviour != asBEHAVE_FACTORY && behaviour != asBEHAVE_LIST_FACTORY ) { func.objectType = objectType; func.objectType->AddRefInternal(); } // Check if the method restricts that use of the template to value types or reference types if( objectType->flags & asOBJ_TEMPLATE ) { r = SetTemplateRestrictions(objectType, &func, "RegisterObjectBehaviour", decl); if (r < 0) return r; } if( behaviour == asBEHAVE_CONSTRUCT ) { // Verify that the return type is void if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); if( objectType->flags & asOBJ_SCRIPT_OBJECT ) { // The script object is a special case asASSERT(func.parameterTypes.GetLength() == 1); beh->construct = AddBehaviourFunction(func, internal); beh->factory = beh->construct; scriptFunctions[beh->factory]->AddRefInternal(); beh->constructors.PushLast(beh->construct); beh->factories.PushLast(beh->factory); func.id = beh->construct; } else { // Verify that it is a value type if( !(func.objectType->flags & asOBJ_VALUE) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // The templates take a hidden parameter with the object type if( (objectType->flags & asOBJ_TEMPLATE) && (func.parameterTypes.GetLength() == 0 || !func.parameterTypes[0].IsReference()) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_FIRST_PARAM_MUST_BE_REF_FOR_TEMPLATE_FACTORY); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // TODO: Verify that the same constructor hasn't been registered already // Store all constructors in a list func.id = AddBehaviourFunction(func, internal); beh->constructors.PushLast(func.id); if( func.parameterTypes.GetLength() == 0 || (func.parameterTypes.GetLength() == 1 && (objectType->flags & asOBJ_TEMPLATE)) ) { beh->construct = func.id; } else if( func.parameterTypes.GetLength() == 1 ) { // Is this the copy constructor? asCDataType paramType = func.parameterTypes[0]; // If the parameter is object, and const reference for input or inout, // and same type as this class, then this is a copy constructor. if( paramType.IsObject() && paramType.IsReference() && paramType.IsReadOnly() && (func.inOutFlags[0] & asTM_INREF) && paramType.GetTypeInfo() == objectType ) beh->copyconstruct = func.id; } } } else if( behaviour == asBEHAVE_DESTRUCT ) { // Must be a value type if( !(func.objectType->flags & asOBJ_VALUE) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } if( beh->destruct ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that the return type is void if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that there are no parameters if( func.parameterTypes.GetLength() > 0 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); func.id = beh->destruct = AddBehaviourFunction(func, internal); } else if( behaviour == asBEHAVE_LIST_CONSTRUCT ) { // Verify that the return type is void if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) ) { if( listPattern ) listPattern->Destroy(this); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Verify that it is a value type if( !(func.objectType->flags & asOBJ_VALUE) ) { if( listPattern ) listPattern->Destroy(this); WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Verify the parameters if( func.parameterTypes.GetLength() != 1 || !func.parameterTypes[0].IsReference() ) { if( listPattern ) listPattern->Destroy(this); WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_LIST_FACTORY_EXPECTS_1_REF_PARAM); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Don't accept duplicates if( beh->listFactory ) { if( listPattern ) listPattern->Destroy(this); return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Add the function func.id = AddBehaviourFunction(func, internal); // Re-use the listFactory member, as it is not possible to have both anyway beh->listFactory = func.id; // Store the list pattern for this function r = scriptFunctions[func.id]->RegisterListPattern(decl, listPattern); if( listPattern ) listPattern->Destroy(this); if( r < 0 ) return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } else if( behaviour == asBEHAVE_FACTORY || behaviour == asBEHAVE_LIST_FACTORY ) { // Must be a ref type and must not have asOBJ_NOHANDLE if( !(objectType->flags & asOBJ_REF) || (objectType->flags & asOBJ_NOHANDLE) ) { if( listPattern ) listPattern->Destroy(this); WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Verify that the return type is a handle to the type if( func.returnType != asCDataType::CreateObjectHandle(objectType, false) ) { if( listPattern ) listPattern->Destroy(this); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // The templates take a hidden parameter with the object type if( (objectType->flags & asOBJ_TEMPLATE) && (func.parameterTypes.GetLength() == 0 || !func.parameterTypes[0].IsReference()) ) { if( listPattern ) listPattern->Destroy(this); WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_FIRST_PARAM_MUST_BE_REF_FOR_TEMPLATE_FACTORY); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } if( behaviour == asBEHAVE_LIST_FACTORY ) { // Make sure the factory takes a reference as its last parameter if( objectType->flags & asOBJ_TEMPLATE ) { if( func.parameterTypes.GetLength() != 2 || !func.parameterTypes[1].IsReference() ) { if( listPattern ) listPattern->Destroy(this); WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_TEMPLATE_LIST_FACTORY_EXPECTS_2_REF_PARAMS); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } } else { if( func.parameterTypes.GetLength() != 1 || !func.parameterTypes[0].IsReference() ) { if( listPattern ) listPattern->Destroy(this); WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_LIST_FACTORY_EXPECTS_1_REF_PARAM); return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } } } // TODO: Verify that the same factory function hasn't been registered already // Don't accept duplicates if( behaviour == asBEHAVE_LIST_FACTORY && beh->listFactory ) { if( listPattern ) listPattern->Destroy(this); return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Store all factory functions in a list func.id = AddBehaviourFunction(func, internal); // The list factory is a special factory and isn't stored together with the rest if( behaviour != asBEHAVE_LIST_FACTORY ) beh->factories.PushLast(func.id); if( (func.parameterTypes.GetLength() == 0) || (func.parameterTypes.GetLength() == 1 && (objectType->flags & asOBJ_TEMPLATE)) ) { beh->factory = func.id; } else if( (func.parameterTypes.GetLength() == 1) || (func.parameterTypes.GetLength() == 2 && (objectType->flags & asOBJ_TEMPLATE)) ) { if( behaviour == asBEHAVE_LIST_FACTORY ) { beh->listFactory = func.id; // Store the list pattern for this function r = scriptFunctions[func.id]->RegisterListPattern(decl, listPattern); if( listPattern ) listPattern->Destroy(this); if( r < 0 ) return ConfigError(r, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } else { // Is this the copy factory? asCDataType paramType = func.parameterTypes[func.parameterTypes.GetLength()-1]; // If the parameter is object, and const reference for input, // and same type as this class, then this is a copy constructor. if( paramType.IsObject() && paramType.IsReference() && paramType.IsReadOnly() && func.inOutFlags[func.parameterTypes.GetLength()-1] == asTM_INREF && paramType.GetTypeInfo() == objectType ) beh->copyfactory = func.id; } } } else if( behaviour == asBEHAVE_ADDREF ) { // Must be a ref type and must not have asOBJ_NOHANDLE, nor asOBJ_SCOPED if( !(func.objectType->flags & asOBJ_REF) || (func.objectType->flags & asOBJ_NOHANDLE) || (func.objectType->flags & asOBJ_SCOPED) || (func.objectType->flags & asOBJ_NOCOUNT) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } if( beh->addref ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that the return type is void if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that there are no parameters if( func.parameterTypes.GetLength() > 0 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); func.id = beh->addref = AddBehaviourFunction(func, internal); } else if( behaviour == asBEHAVE_RELEASE ) { // Must be a ref type and must not have asOBJ_NOHANDLE if( !(func.objectType->flags & asOBJ_REF) || (func.objectType->flags & asOBJ_NOHANDLE) || (func.objectType->flags & asOBJ_NOCOUNT) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } if( beh->release ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that the return type is void if( func.returnType != asCDataType::CreatePrimitive(ttVoid, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that there are no parameters if( func.parameterTypes.GetLength() > 0 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); func.id = beh->release = AddBehaviourFunction(func, internal); } else if( behaviour == asBEHAVE_TEMPLATE_CALLBACK ) { // Must be a template type if( !(func.objectType->flags & asOBJ_TEMPLATE) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } if( beh->templateCallback ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that the return type is bool if( func.returnType != asCDataType::CreatePrimitive(ttBool, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that there are two parameters if( func.parameterTypes.GetLength() != 2 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // The first parameter must be an inref (to receive the object type), and // the second must be a bool out ref (to return if the type should or shouldn't be garbage collected) if( func.inOutFlags[0] != asTM_INREF || func.inOutFlags[1] != asTM_OUTREF || !func.parameterTypes[1].IsEqualExceptRef(asCDataType::CreatePrimitive(ttBool, false)) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); func.id = beh->templateCallback = AddBehaviourFunction(func, internal); } else if( behaviour >= asBEHAVE_FIRST_GC && behaviour <= asBEHAVE_LAST_GC ) { // Only allow GC behaviours for types registered to be garbage collected if( !(func.objectType->flags & asOBJ_GC) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Verify parameter count if( (behaviour == asBEHAVE_GETREFCOUNT || behaviour == asBEHAVE_SETGCFLAG || behaviour == asBEHAVE_GETGCFLAG) && func.parameterTypes.GetLength() != 0 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); if( (behaviour == asBEHAVE_ENUMREFS || behaviour == asBEHAVE_RELEASEREFS) && func.parameterTypes.GetLength() != 1 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify return type if( behaviour == asBEHAVE_GETREFCOUNT && func.returnType != asCDataType::CreatePrimitive(ttInt, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); if( behaviour == asBEHAVE_GETGCFLAG && func.returnType != asCDataType::CreatePrimitive(ttBool, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); if( (behaviour == asBEHAVE_SETGCFLAG || behaviour == asBEHAVE_ENUMREFS || behaviour == asBEHAVE_RELEASEREFS) && func.returnType != asCDataType::CreatePrimitive(ttVoid, false) ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); if( behaviour == asBEHAVE_GETREFCOUNT ) func.id = beh->gcGetRefCount = AddBehaviourFunction(func, internal); else if( behaviour == asBEHAVE_SETGCFLAG ) func.id = beh->gcSetFlag = AddBehaviourFunction(func, internal); else if( behaviour == asBEHAVE_GETGCFLAG ) func.id = beh->gcGetFlag = AddBehaviourFunction(func, internal); else if( behaviour == asBEHAVE_ENUMREFS ) func.id = beh->gcEnumReferences = AddBehaviourFunction(func, internal); else if( behaviour == asBEHAVE_RELEASEREFS ) func.id = beh->gcReleaseAllReferences = AddBehaviourFunction(func, internal); } else if ( behaviour == asBEHAVE_GET_WEAKREF_FLAG ) { // This behaviour is only allowed for reference types if( !(func.objectType->flags & asOBJ_REF) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Don't allow it if the type is registered with nohandle or scoped if( func.objectType->flags & (asOBJ_NOHANDLE|asOBJ_SCOPED) ) { WriteMessage("", 0, 0, asMSGTYPE_ERROR, TXT_ILLEGAL_BEHAVIOUR_FOR_TYPE); return ConfigError(asILLEGAL_BEHAVIOUR_FOR_TYPE, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } // Verify that the return type is a reference since it needs to return a pointer to an asISharedBool if( !func.returnType.IsReference() ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Verify that there are no parameters if( func.parameterTypes.GetLength() != 0 ) return ConfigError(asINVALID_DECLARATION, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); if( beh->getWeakRefFlag ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); func.id = beh->getWeakRefFlag = AddBehaviourFunction(func, internal); } else { asASSERT(false); return ConfigError(asINVALID_ARG, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); } if( func.id < 0 ) return ConfigError(func.id, "RegisterObjectBehaviour", objectType->name.AddressOf(), decl); // Return function id as success return func.id; } int asCScriptEngine::SetTemplateRestrictions(asCObjectType *templateType, asCScriptFunction *func, const char *caller, const char *decl) { asASSERT(templateType->flags & asOBJ_TEMPLATE); for (asUINT subTypeIdx = 0; subTypeIdx < templateType->templateSubTypes.GetLength(); subTypeIdx++) { if (func->returnType.GetTypeInfo() == templateType->templateSubTypes[subTypeIdx].GetTypeInfo()) { if (func->returnType.IsObjectHandle()) templateType->acceptValueSubType = false; else if (!func->returnType.IsReference()) templateType->acceptRefSubType = false; // Can't support template subtypes by value, since each type is treated differently in the ABI if (!func->returnType.IsObjectHandle() && !func->returnType.IsReference()) return ConfigError(asNOT_SUPPORTED, caller, templateType->name.AddressOf(), decl); } for (asUINT n = 0; n < func->parameterTypes.GetLength(); n++) { if (func->parameterTypes[n].GetTypeInfo() == templateType->templateSubTypes[subTypeIdx].GetTypeInfo()) { if (func->parameterTypes[n].IsObjectHandle() || (!ep.allowUnsafeReferences && func->parameterTypes[n].IsReference() && func->inOutFlags[n] == asTM_INOUTREF)) templateType->acceptValueSubType = false; else if (!func->parameterTypes[n].IsReference()) templateType->acceptRefSubType = false; // Can't support template subtypes by value, since each type is treated differently in the ABI if (!func->parameterTypes[n].IsObjectHandle() && !func->parameterTypes[n].IsReference()) return ConfigError(asNOT_SUPPORTED, caller, templateType->name.AddressOf(), decl); } } } return asSUCCESS; } int asCScriptEngine::VerifyVarTypeNotInFunction(asCScriptFunction *func) { // Don't allow var type in this function if( func->returnType.GetTokenType() == ttQuestion ) return asINVALID_DECLARATION; for( unsigned int n = 0; n < func->parameterTypes.GetLength(); n++ ) if( func->parameterTypes[n].GetTokenType() == ttQuestion ) return asINVALID_DECLARATION; return 0; } int asCScriptEngine::AddBehaviourFunction(asCScriptFunction &func, asSSystemFunctionInterface &internal) { asUINT n; int id = GetNextScriptFunctionId(); asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal); if( newInterface == 0 ) return asOUT_OF_MEMORY; asCScriptFunction *f = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM); if( f == 0 ) { asDELETE(newInterface, asSSystemFunctionInterface); return asOUT_OF_MEMORY; } asASSERT(func.name != "" && func.name != "f"); f->name = func.name; f->sysFuncIntf = newInterface; f->returnType = func.returnType; f->objectType = func.objectType; if( f->objectType ) f->objectType->AddRefInternal(); f->id = id; f->SetReadOnly(func.IsReadOnly()); f->accessMask = defaultAccessMask; f->parameterTypes = func.parameterTypes; f->parameterNames = func.parameterNames; f->inOutFlags = func.inOutFlags; f->traits = func.traits; for( n = 0; n < func.defaultArgs.GetLength(); n++ ) if( func.defaultArgs[n] ) f->defaultArgs.PushLast(asNEW(asCString)(*func.defaultArgs[n])); else f->defaultArgs.PushLast(0); AddScriptFunction(f); // If parameter type from other groups are used, add references currentGroup->AddReferencesForFunc(this, f); return id; } // interface int asCScriptEngine::RegisterGlobalProperty(const char *declaration, void *pointer) { // Don't accept a null pointer if( pointer == 0 ) return ConfigError(asINVALID_ARG, "RegisterGlobalProperty", declaration, 0); asCDataType type; asCString name; int r; asCBuilder bld(this, 0); if( (r = bld.VerifyProperty(0, declaration, name, type, defaultNamespace)) < 0 ) return ConfigError(r, "RegisterGlobalProperty", declaration, 0); // Don't allow registering references as global properties if( type.IsReference() ) return ConfigError(asINVALID_TYPE, "RegisterGlobalProperty", declaration, 0); // Store the property info asCGlobalProperty *prop = AllocateGlobalProperty(); prop->name = name; prop->nameSpace = defaultNamespace; prop->type = type; prop->accessMask = defaultAccessMask; prop->SetRegisteredAddress(pointer); varAddressMap.Insert(prop->GetAddressOfValue(), prop); registeredGlobalProps.Put(prop); prop->AddRef(); currentGroup->globalProps.PushLast(prop); currentGroup->AddReferencesForType(this, type.GetTypeInfo()); return asSUCCESS; } // internal asCGlobalProperty *asCScriptEngine::AllocateGlobalProperty() { asCGlobalProperty *prop = asNEW(asCGlobalProperty); if( prop == 0 ) { // Out of memory return 0; } // First check the availability of a free slot if( freeGlobalPropertyIds.GetLength() ) { prop->id = freeGlobalPropertyIds.PopLast(); globalProperties[prop->id] = prop; return prop; } prop->id = (asUINT)globalProperties.GetLength(); globalProperties.PushLast(prop); return prop; } // internal void asCScriptEngine::RemoveGlobalProperty(asCGlobalProperty *prop) { int index = globalProperties.IndexOf(prop); if( index >= 0 ) { freeGlobalPropertyIds.PushLast(index); globalProperties[index] = 0; asSMapNode *node; varAddressMap.MoveTo(&node, prop->GetAddressOfValue()); asASSERT(node); if( node ) varAddressMap.Erase(node); prop->Release(); } } // interface asUINT asCScriptEngine::GetGlobalPropertyCount() const { return asUINT(registeredGlobalProps.GetSize()); } // interface // TODO: If the typeId ever encodes the const flag, then the isConst parameter should be removed int asCScriptEngine::GetGlobalPropertyByIndex(asUINT index, const char **name, const char **nameSpace, int *typeId, bool *isConst, const char **configGroup, void **pointer, asDWORD *accessMask) const { const asCGlobalProperty *prop = registeredGlobalProps.Get(index); if( !prop ) return asINVALID_ARG; if( name ) *name = prop->name.AddressOf(); if( nameSpace ) *nameSpace = prop->nameSpace->name.AddressOf(); if( typeId ) *typeId = GetTypeIdFromDataType(prop->type); if( isConst ) *isConst = prop->type.IsReadOnly(); if( pointer ) *pointer = prop->GetRegisteredAddress(); if( accessMask ) *accessMask = prop->accessMask; if( configGroup ) { asCConfigGroup *group = FindConfigGroupForGlobalVar(index); if( group ) *configGroup = group->groupName.AddressOf(); else *configGroup = 0; } return asSUCCESS; } // interface int asCScriptEngine::GetGlobalPropertyIndexByName(const char *name) const { asSNameSpace *ns = defaultNamespace; // Find the global var id while( ns ) { int id = registeredGlobalProps.GetFirstIndex(ns, name); if( id >= 0 ) return id; // Recursively search parent namespace ns = GetParentNameSpace(ns); } return asNO_GLOBAL_VAR; } // interface int asCScriptEngine::GetGlobalPropertyIndexByDecl(const char *decl) const { // This const cast is OK. The builder won't modify the engine asCBuilder bld(const_cast(this), 0); // Don't write parser errors to the message callback bld.silent = true; asCString name; asSNameSpace *ns; asCDataType dt; int r = bld.ParseVariableDeclaration(decl, defaultNamespace, name, ns, dt); if( r < 0 ) return r; // Search for a match while( ns ) { int id = registeredGlobalProps.GetFirstIndex(ns, name, asCCompGlobPropType(dt)); if( id >= 0 ) return id; ns = GetParentNameSpace(ns); } return asNO_GLOBAL_VAR; } // interface int asCScriptEngine::RegisterObjectMethod(const char *obj, const char *declaration, const asSFuncPtr &funcPointer, asDWORD callConv, void *auxiliary, int compositeOffset, bool isCompositeIndirect) { if( obj == 0 ) return ConfigError(asINVALID_ARG, "RegisterObjectMethod", obj, declaration); // Determine the object type asCDataType dt; asCBuilder bld(this, 0); int r = bld.ParseDataType(obj, &dt, defaultNamespace); if( r < 0 ) return ConfigError(r, "RegisterObjectMethod", obj, declaration); // Don't allow application to modify primitives or handles if( dt.GetTypeInfo() == 0 || (dt.IsObjectHandle() && !(dt.GetTypeInfo()->GetFlags() & asOBJ_IMPLICIT_HANDLE))) return ConfigError(asINVALID_ARG, "RegisterObjectMethod", obj, declaration); // Don't allow application to modify built-in types or funcdefs if( dt.GetTypeInfo() == &functionBehaviours || dt.GetTypeInfo() == &scriptTypeBehaviours || CastToFuncdefType(dt.GetTypeInfo()) ) return ConfigError(asINVALID_ARG, "RegisterObjectMethod", obj, declaration); // Don't allow modifying generated template instances if( dt.GetTypeInfo() && (dt.GetTypeInfo()->flags & asOBJ_TEMPLATE) && generatedTemplateTypes.Exists(CastToObjectType(dt.GetTypeInfo())) ) return ConfigError(asINVALID_TYPE, "RegisterObjectMethod", obj, declaration); return RegisterMethodToObjectType(CastToObjectType(dt.GetTypeInfo()), declaration, funcPointer, callConv, auxiliary, compositeOffset, isCompositeIndirect); } // internal int asCScriptEngine::RegisterMethodToObjectType(asCObjectType *objectType, const char *declaration, const asSFuncPtr &funcPointer, asDWORD callConv, void *auxiliary, int compositeOffset, bool isCompositeIndirect) { #ifdef AS_MAX_PORTABILITY if( callConv != asCALL_GENERIC ) return ConfigError(asNOT_SUPPORTED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); #endif asSSystemFunctionInterface internal; int r = DetectCallingConvention(true, funcPointer, callConv, auxiliary, &internal); if( r < 0 ) return ConfigError(r, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); internal.compositeOffset = compositeOffset; internal.isCompositeIndirect = isCompositeIndirect; if( (compositeOffset || isCompositeIndirect) && callConv != asCALL_THISCALL ) return ConfigError(asINVALID_ARG, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); // TODO: cleanup: This is identical to what is in RegisterMethodToObjectType // If the object type is a template, make sure there are no generated instances already if( objectType->flags & asOBJ_TEMPLATE ) { for( asUINT n = 0; n < generatedTemplateTypes.GetLength(); n++ ) { asCObjectType *tmpl = generatedTemplateTypes[n]; if( tmpl->name == objectType->name && tmpl->nameSpace == objectType->nameSpace && !(tmpl->templateSubTypes[0].GetTypeInfo() && (tmpl->templateSubTypes[0].GetTypeInfo()->flags & asOBJ_TEMPLATE_SUBTYPE)) ) { asCString msg; msg.Format(TXT_TEMPLATE_s_ALREADY_GENERATED_CANT_REGISTER, asCDataType::CreateType(tmpl, false).Format(tmpl->nameSpace).AddressOf()); WriteMessage("",0,0, asMSGTYPE_ERROR, msg.AddressOf()); return ConfigError(asERROR, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } } } isPrepared = false; // Put the system function in the list of system functions asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal); if( newInterface == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM); if( func == 0 ) { asDELETE(newInterface, asSSystemFunctionInterface); return ConfigError(asOUT_OF_MEMORY, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } func->sysFuncIntf = newInterface; func->objectType = objectType; func->objectType->AddRefInternal(); asCBuilder bld(this, 0); r = bld.ParseFunctionDeclaration(func->objectType, declaration, func, true, &newInterface->paramAutoHandles, &newInterface->returnAutoHandle); if( r < 0 ) { // Set as dummy function before deleting func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asINVALID_DECLARATION, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } // Check name conflicts r = bld.CheckNameConflictMember(objectType, func->name.AddressOf(), 0, 0, false, false); if( r < 0 ) { func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asNAME_TAKEN, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } // Validate property signature if( func->IsProperty() && (r = bld.ValidateVirtualProperty(func)) < 0 ) { // Set as dummy function before deleting func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); if( r == -5 ) return ConfigError(asNAME_TAKEN, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); else return ConfigError(asINVALID_DECLARATION, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } // Check against duplicate methods if( func->name == "opConv" || func->name == "opImplConv" || func->name == "opCast" || func->name == "opImplCast" ) { // opConv and opCast are special methods that the compiler differentiates between by the return type for( asUINT n = 0; n < func->objectType->methods.GetLength(); n++ ) { asCScriptFunction *f = scriptFunctions[func->objectType->methods[n]]; if( f->name == func->name && f->IsSignatureExceptNameEqual(func) ) { func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asALREADY_REGISTERED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } } } else { for( asUINT n = 0; n < func->objectType->methods.GetLength(); n++ ) { asCScriptFunction *f = scriptFunctions[func->objectType->methods[n]]; if( f->name == func->name && f->IsSignatureExceptNameAndReturnTypeEqual(func) ) { func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asALREADY_REGISTERED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); } } } func->id = GetNextScriptFunctionId(); func->objectType->methods.PushLast(func->id); func->accessMask = defaultAccessMask; AddScriptFunction(func); // If parameter type from other groups are used, add references currentGroup->AddReferencesForFunc(this, func); // Check if the method restricts that use of the template to value types or reference types if( func->objectType->flags & asOBJ_TEMPLATE ) { r = SetTemplateRestrictions(func->objectType, func, "RegisterObjectMethod", declaration); if (r < 0) return r; } // TODO: beh.copy member will be removed, so this is not necessary // Is this the default copy behaviour? if( func->name == "opAssign" && func->parameterTypes.GetLength() == 1 && !func->IsReadOnly() && ((objectType->flags & asOBJ_SCRIPT_OBJECT) || func->parameterTypes[0].IsEqualExceptRefAndConst(asCDataType::CreateType(func->objectType, false))) ) { if( func->objectType->beh.copy != 0 ) return ConfigError(asALREADY_REGISTERED, "RegisterObjectMethod", objectType->name.AddressOf(), declaration); func->objectType->beh.copy = func->id; func->AddRefInternal(); } // Return the function id as success return func->id; } // interface int asCScriptEngine::RegisterGlobalFunction(const char *declaration, const asSFuncPtr &funcPointer, asDWORD callConv, void *auxiliary) { #ifdef AS_MAX_PORTABILITY if( callConv != asCALL_GENERIC ) return ConfigError(asNOT_SUPPORTED, "RegisterGlobalFunction", declaration, 0); #endif asSSystemFunctionInterface internal; int r = DetectCallingConvention(false, funcPointer, callConv, auxiliary, &internal); if( r < 0 ) return ConfigError(r, "RegisterGlobalFunction", declaration, 0); isPrepared = false; // Put the system function in the list of system functions asSSystemFunctionInterface *newInterface = asNEW(asSSystemFunctionInterface)(internal); if( newInterface == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterGlobalFunction", declaration, 0); asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_SYSTEM); if( func == 0 ) { asDELETE(newInterface, asSSystemFunctionInterface); return ConfigError(asOUT_OF_MEMORY, "RegisterGlobalFunction", declaration, 0); } func->sysFuncIntf = newInterface; asCBuilder bld(this, 0); r = bld.ParseFunctionDeclaration(0, declaration, func, true, &newInterface->paramAutoHandles, &newInterface->returnAutoHandle, defaultNamespace); if( r < 0 ) { // Set as dummy function before deleting func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asINVALID_DECLARATION, "RegisterGlobalFunction", declaration, 0); } // TODO: namespace: What if the declaration defined an explicit namespace? func->nameSpace = defaultNamespace; // Check name conflicts r = bld.CheckNameConflict(func->name.AddressOf(), 0, 0, defaultNamespace, false, false); if( r < 0 ) { // Set as dummy function before deleting func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asNAME_TAKEN, "RegisterGlobalFunction", declaration, 0); } // Validate property signature if( func->IsProperty() && (r = bld.ValidateVirtualProperty(func)) < 0 ) { // Set as dummy function before deleting func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); if( r == -5 ) return ConfigError(asNAME_TAKEN, "RegisterGlobalFunction", declaration, 0); else return ConfigError(asINVALID_DECLARATION, "RegisterGlobalFunction", declaration, 0); } // Make sure the function is not identical to a previously registered function asUINT n; const asCArray &idxs = registeredGlobalFuncs.GetIndexes(func->nameSpace, func->name); for( n = 0; n < idxs.GetLength(); n++ ) { asCScriptFunction *f = registeredGlobalFuncs.Get(idxs[n]); if( f->IsSignatureExceptNameAndReturnTypeEqual(func) ) { func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asALREADY_REGISTERED, "RegisterGlobalFunction", declaration, 0); } } func->id = GetNextScriptFunctionId(); AddScriptFunction(func); currentGroup->scriptFunctions.PushLast(func); func->accessMask = defaultAccessMask; registeredGlobalFuncs.Put(func); // If parameter type from other groups are used, add references currentGroup->AddReferencesForFunc(this, func); // Return the function id as success return func->id; } // interface asUINT asCScriptEngine::GetGlobalFunctionCount() const { // Don't count the builtin delegate factory return asUINT(registeredGlobalFuncs.GetSize()-1); } // interface asIScriptFunction *asCScriptEngine::GetGlobalFunctionByIndex(asUINT index) const { // Don't count the builtin delegate factory index++; if( index >= registeredGlobalFuncs.GetSize() ) return 0; return static_cast(const_cast(registeredGlobalFuncs.Get(index))); } // interface asIScriptFunction *asCScriptEngine::GetGlobalFunctionByDecl(const char *decl) const { asCBuilder bld(const_cast(this), 0); // Don't write parser errors to the message callback bld.silent = true; asCScriptFunction func(const_cast(this), 0, asFUNC_DUMMY); int r = bld.ParseFunctionDeclaration(0, decl, &func, false, 0, 0, defaultNamespace); if( r < 0 ) return 0; asSNameSpace *ns = defaultNamespace; // Search script functions for matching interface while( ns ) { asIScriptFunction *f = 0; const asCArray &idxs = registeredGlobalFuncs.GetIndexes(ns, func.name); for( unsigned int n = 0; n < idxs.GetLength(); n++ ) { const asCScriptFunction *funcPtr = registeredGlobalFuncs.Get(idxs[n]); if( funcPtr->objectType == 0 && func.returnType == funcPtr->returnType && func.parameterTypes.GetLength() == funcPtr->parameterTypes.GetLength() ) { bool match = true; for( asUINT p = 0; p < func.parameterTypes.GetLength(); ++p ) { if( func.parameterTypes[p] != funcPtr->parameterTypes[p] ) { match = false; break; } } if( match ) { if( f == 0 ) f = const_cast(funcPtr); else // Multiple functions return 0; } } } if( f ) return f; // Recursively search parent namespaces ns = GetParentNameSpace(ns); } return 0; } asCTypeInfo *asCScriptEngine::GetRegisteredType(const asCString &type, asSNameSpace *ns) const { asSMapNode *cursor; if( allRegisteredTypes.MoveTo(&cursor, asSNameSpaceNamePair(ns, type)) ) return cursor->value; return 0; } void asCScriptEngine::PrepareEngine() { if( isPrepared ) return; if( configFailed ) return; asUINT n; for( n = 0; n < scriptFunctions.GetLength(); n++ ) { // Determine the host application interface if( scriptFunctions[n] && scriptFunctions[n]->funcType == asFUNC_SYSTEM ) { if( scriptFunctions[n]->sysFuncIntf->callConv == ICC_GENERIC_FUNC || scriptFunctions[n]->sysFuncIntf->callConv == ICC_GENERIC_METHOD ) PrepareSystemFunctionGeneric(scriptFunctions[n], scriptFunctions[n]->sysFuncIntf, this); else PrepareSystemFunction(scriptFunctions[n], scriptFunctions[n]->sysFuncIntf, this); } } // Validate object type registrations for( n = 0; n < registeredObjTypes.GetLength(); n++ ) { asCObjectType *type = registeredObjTypes[n]; if( type && !(type->flags & asOBJ_SCRIPT_OBJECT) ) { bool missingBehaviour = false; const char *infoMsg = 0; // Verify that GC types have all behaviours if( type->flags & asOBJ_GC ) { if (type->flags & asOBJ_REF) { if (type->beh.addref == 0 || type->beh.release == 0 || type->beh.gcGetRefCount == 0 || type->beh.gcSetFlag == 0 || type->beh.gcGetFlag == 0 || type->beh.gcEnumReferences == 0 || type->beh.gcReleaseAllReferences == 0) { infoMsg = TXT_GC_REQUIRE_ADD_REL_GC_BEHAVIOUR; missingBehaviour = true; } } else { if (type->beh.gcEnumReferences == 0) { infoMsg = TXT_VALUE_GC_REQUIRE_GC_BEHAVIOUR; missingBehaviour = true; } } } // Verify that scoped ref types have the release behaviour if( type->flags & asOBJ_SCOPED ) { if( type->beh.release == 0 ) { infoMsg = TXT_SCOPE_REQUIRE_REL_BEHAVIOUR; missingBehaviour = true; } } // Verify that ref types have add ref and release behaviours if( (type->flags & asOBJ_REF) && !(type->flags & asOBJ_SCOPED) && !(type->flags & asOBJ_NOHANDLE) && !(type->flags & asOBJ_NOCOUNT) ) { if( type->beh.addref == 0 || type->beh.release == 0 ) { infoMsg = TXT_REF_REQUIRE_ADD_REL_BEHAVIOUR; missingBehaviour = true; } } // Verify that non-pod value types have the constructor and destructor registered if( (type->flags & asOBJ_VALUE) && !(type->flags & asOBJ_POD) ) { if( type->beh.constructors.GetLength() == 0 || type->beh.destruct == 0 ) { infoMsg = TXT_NON_POD_REQUIRE_CONSTR_DESTR_BEHAVIOUR; missingBehaviour = true; } } if( missingBehaviour ) { asCString str; str.Format(TXT_TYPE_s_IS_MISSING_BEHAVIOURS, type->name.AddressOf()); WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); WriteMessage("", 0, 0, asMSGTYPE_INFORMATION, infoMsg); ConfigError(asINVALID_CONFIGURATION, 0, 0, 0); } } } isPrepared = true; } int asCScriptEngine::ConfigError(int err, const char *funcName, const char *arg1, const char *arg2) { configFailed = true; if( funcName ) { asCString str; if( arg1 ) { if( arg2 ) str.Format(TXT_FAILED_IN_FUNC_s_WITH_s_AND_s_s_d, funcName, arg1, arg2, errorNames[-err], err); else str.Format(TXT_FAILED_IN_FUNC_s_WITH_s_s_d, funcName, arg1, errorNames[-err], err); } else str.Format(TXT_FAILED_IN_FUNC_s_s_d, funcName, errorNames[-err], err); WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); } return err; } // interface int asCScriptEngine::RegisterDefaultArrayType(const char *type) { asCBuilder bld(this, 0); asCDataType dt; int r = bld.ParseDataType(type, &dt, defaultNamespace); if( r < 0 ) return r; if( dt.GetTypeInfo() == 0 || !(dt.GetTypeInfo()->GetFlags() & asOBJ_TEMPLATE) ) return asINVALID_TYPE; defaultArrayObjectType = CastToObjectType(dt.GetTypeInfo()); defaultArrayObjectType->AddRefInternal(); return 0; } // interface int asCScriptEngine::GetDefaultArrayTypeId() const { if( defaultArrayObjectType ) return GetTypeIdFromDataType(asCDataType::CreateType(defaultArrayObjectType, false)); return asINVALID_TYPE; } // interface int asCScriptEngine::RegisterStringFactory(const char *datatype, asIStringFactory *factory) { if (factory == 0) return ConfigError(asINVALID_ARG, "RegisterStringFactory", datatype, 0); // Parse the data type asCBuilder bld(this, 0); asCDataType dt; int r = bld.ParseDataType(datatype, &dt, defaultNamespace, true); if (r < 0) return ConfigError(asINVALID_TYPE, "RegisterStringFactory", datatype, 0); // Validate the type. It must not be reference or handle if (dt.IsReference() || dt.IsObjectHandle()) return ConfigError(asINVALID_TYPE, "RegisterStringFactory", datatype, 0); // All string literals will be treated as const dt.MakeReadOnly(true); stringType = dt; stringFactory = factory; return asSUCCESS; } // interface int asCScriptEngine::GetStringFactoryReturnTypeId(asDWORD *flags) const { if( stringFactory == 0 ) return asNO_FUNCTION; if( flags ) *flags = 0; return GetTypeIdFromDataType(stringType); } // internal asCModule *asCScriptEngine::GetModule(const char *name, bool create) { // Accept null as well as zero-length string if( name == 0 ) name = ""; asCModule *retModule = 0; ACQUIRESHARED(engineRWLock); if( lastModule && lastModule->name == name ) retModule = lastModule; else { // TODO: optimize: Improve linear search for( asUINT n = 0; n < scriptModules.GetLength(); ++n ) if( scriptModules[n] && scriptModules[n]->name == name ) { retModule = scriptModules[n]; break; } } RELEASESHARED(engineRWLock); if( retModule ) { ACQUIREEXCLUSIVE(engineRWLock); lastModule = retModule; RELEASEEXCLUSIVE(engineRWLock); return retModule; } if( create ) { retModule = asNEW(asCModule)(name, this); if( retModule == 0 ) { // Out of memory return 0; } ACQUIREEXCLUSIVE(engineRWLock); scriptModules.PushLast(retModule); lastModule = retModule; RELEASEEXCLUSIVE(engineRWLock); } return retModule; } asCModule *asCScriptEngine::GetModuleFromFuncId(int id) { if( id < 0 ) return 0; if( id >= (int)scriptFunctions.GetLength() ) return 0; asCScriptFunction *func = scriptFunctions[id]; if( func == 0 ) return 0; return func->module; } // internal int asCScriptEngine::RequestBuild() { ACQUIREEXCLUSIVE(engineRWLock); if( isBuilding ) { RELEASEEXCLUSIVE(engineRWLock); return asBUILD_IN_PROGRESS; } isBuilding = true; RELEASEEXCLUSIVE(engineRWLock); return 0; } // internal void asCScriptEngine::BuildCompleted() { // Always free up pooled memory after a completed build memoryMgr.FreeUnusedMemory(); isBuilding = false; } void asCScriptEngine::RemoveTemplateInstanceType(asCObjectType *t) { // If there is a module that still owns the generated type, then don't remove it if( t->module ) return; // Don't remove it if there are external refernces if( t->externalRefCount.get() ) return; // Only remove the template instance type if no config group is using it if( defaultGroup.generatedTemplateInstances.Exists(t) ) return; for( asUINT n = 0; n < configGroups.GetLength(); n++ ) if( configGroups[n]->generatedTemplateInstances.Exists(t) ) return; t->DestroyInternal(); templateInstanceTypes.RemoveValue(t); generatedTemplateTypes.RemoveValue(t); t->ReleaseInternal(); } // internal asCObjectType *asCScriptEngine::GetTemplateInstanceType(asCObjectType *templateType, asCArray &subTypes, asCModule *requestingModule) { asUINT n; // Is there any template instance type or template specialization already with this subtype? for( n = 0; n < templateInstanceTypes.GetLength(); n++ ) { asCObjectType *type = templateInstanceTypes[n]; if( type && type->name == templateType->name && type->nameSpace == templateType->nameSpace && type->templateSubTypes == subTypes ) { // If the template instance is generated, then the module should hold a reference // to it so the config group can determine see that the template type is in use. // Template specializations will be treated as normal types if( requestingModule && generatedTemplateTypes.Exists(type) ) { if( type->module == 0 ) { // Set the ownership of this template type // It may be without ownership if it was previously created from application with for example GetTypeInfoByDecl type->module = requestingModule; } if( !requestingModule->templateInstances.Exists(type) ) { requestingModule->templateInstances.PushLast(type); type->AddRefInternal(); } } return templateInstanceTypes[n]; } } // No previous template instance exists // Make sure this template supports the subtype for( n = 0; n < subTypes.GetLength(); n++ ) { if( !templateType->acceptValueSubType && (subTypes[n].IsPrimitive() || (subTypes[n].GetTypeInfo()->flags & asOBJ_VALUE)) ) return 0; if( !templateType->acceptRefSubType && (subTypes[n].IsObject() && (subTypes[n].GetTypeInfo()->flags & asOBJ_REF)) ) return 0; } // Create a new template instance type based on the templateType asCObjectType *ot = asNEW(asCObjectType)(this); if( ot == 0 ) { // Out of memory return 0; } ot->templateSubTypes = subTypes; ot->flags = templateType->flags; ot->size = templateType->size; ot->name = templateType->name; ot->nameSpace = templateType->nameSpace; // If the template is being requested from a module, then the module should hold a reference to the type if( requestingModule ) { // Set the ownership of this template type ot->module = requestingModule; requestingModule->templateInstances.PushLast(ot); ot->AddRefInternal(); } else { // If the template type is not requested directly from a module, then set the ownership // of it to the same module as one of the subtypes. If none of the subtypes are owned by] // any module, the template instance will be without ownership and can be removed from the // engine at any time (unless the application holds an external reference). for( n = 0; n < subTypes.GetLength(); n++ ) { if( subTypes[n].GetTypeInfo() ) { ot->module = subTypes[n].GetTypeInfo()->module; if( ot->module ) { ot->module->templateInstances.PushLast(ot); ot->AddRefInternal(); break; } } } } // Before filling in the methods, call the template instance callback behaviour to validate the type if( templateType->beh.templateCallback ) { // If the validation is deferred then the validation will be done later, // so it is necessary to continue the preparation of the template instance type if( !deferValidationOfTemplateTypes ) { asCScriptFunction *callback = scriptFunctions[templateType->beh.templateCallback]; bool dontGarbageCollect = false; if( !CallGlobalFunctionRetBool(ot, &dontGarbageCollect, callback->sysFuncIntf, callback) ) { // The type cannot be instantiated ot->templateSubTypes.SetLength(0); if( ot->module ) { ot->module->templateInstances.RemoveValue(ot); ot->ReleaseInternal(); } ot->ReleaseInternal(); return 0; } // If the callback said this template instance won't be garbage collected then remove the flag if( dontGarbageCollect ) ot->flags &= ~asOBJ_GC; } ot->beh.templateCallback = templateType->beh.templateCallback; scriptFunctions[ot->beh.templateCallback]->AddRefInternal(); } ot->methods = templateType->methods; for( n = 0; n < ot->methods.GetLength(); n++ ) scriptFunctions[ot->methods[n]]->AddRefInternal(); if( templateType->flags & asOBJ_REF ) { // Store the real factory in the constructor. This is used by the CreateScriptObject function. // Otherwise it wouldn't be necessary to store the real factory ids. ot->beh.construct = templateType->beh.factory; ot->beh.constructors = templateType->beh.factories; } else { ot->beh.construct = templateType->beh.construct; ot->beh.constructors = templateType->beh.constructors; } for( n = 0; n < ot->beh.constructors.GetLength(); n++ ) scriptFunctions[ot->beh.constructors[n]]->AddRefInternal(); // Before proceeding with the generation of the template functions for the template instance it is necessary // to include the new template instance type in the list of known types, otherwise it is possible that we get // a infinite recursive loop as the template instance type is requested again during the generation of the // template functions. templateInstanceTypes.PushLast(ot); // Store the template instance types that have been created automatically by the engine from a template type // The object types in templateInstanceTypes that are not also in generatedTemplateTypes are registered template specializations generatedTemplateTypes.PushLast(ot); // Any child funcdefs must be copied to the template instance (with adjustments in case of template subtypes) // This must be done before resolving other methods, to make sure the other methods that may refer to the // templated funcdef will resolve to the new funcdef for (n = 0; n < templateType->childFuncDefs.GetLength(); n++) { asCFuncdefType *funcdef = GenerateNewTemplateFuncdef(templateType, ot, templateType->childFuncDefs[n]); funcdef->parentClass = ot; ot->childFuncDefs.PushLast(funcdef); } // As the new template type is instantiated the engine should // generate new functions to substitute the ones with the template subtype. for( n = 0; n < ot->beh.constructors.GetLength(); n++ ) { int funcId = ot->beh.constructors[n]; asCScriptFunction *func = scriptFunctions[funcId]; if( GenerateNewTemplateFunction(templateType, ot, func, &func) ) { // Release the old function, the new one already has its ref count set to 1 scriptFunctions[funcId]->ReleaseInternal(); ot->beh.constructors[n] = func->id; if( ot->beh.construct == funcId ) ot->beh.construct = func->id; } } ot->beh.factory = 0; if( templateType->flags & asOBJ_REF ) { // Generate factory stubs for each of the factories for( n = 0; n < ot->beh.constructors.GetLength(); n++ ) { asCScriptFunction *func = GenerateTemplateFactoryStub(templateType, ot, ot->beh.constructors[n]); ot->beh.factories.PushLast(func->id); // Set the default factory as well if( ot->beh.constructors[n] == ot->beh.construct ) ot->beh.factory = func->id; } } else { // Generate factory stubs for each of the constructors for( n = 0; n < ot->beh.constructors.GetLength(); n++ ) { asCScriptFunction *func = GenerateTemplateFactoryStub(templateType, ot, ot->beh.constructors[n]); if( ot->beh.constructors[n] == ot->beh.construct ) ot->beh.construct = func->id; // Release previous constructor scriptFunctions[ot->beh.constructors[n]]->ReleaseInternal(); ot->beh.constructors[n] = func->id; } } // Generate stub for the list factory as well if( templateType->beh.listFactory ) { asCScriptFunction *func = GenerateTemplateFactoryStub(templateType, ot, templateType->beh.listFactory); // Rename the function to easily identify it in LoadByteCode func->name = "$list"; ot->beh.listFactory = func->id; } ot->beh.addref = templateType->beh.addref; if( scriptFunctions[ot->beh.addref] ) scriptFunctions[ot->beh.addref]->AddRefInternal(); ot->beh.release = templateType->beh.release; if( scriptFunctions[ot->beh.release] ) scriptFunctions[ot->beh.release]->AddRefInternal(); ot->beh.destruct = templateType->beh.destruct; if( scriptFunctions[ot->beh.destruct] ) scriptFunctions[ot->beh.destruct]->AddRefInternal(); ot->beh.copy = templateType->beh.copy; if( scriptFunctions[ot->beh.copy] ) scriptFunctions[ot->beh.copy]->AddRefInternal(); ot->beh.gcGetRefCount = templateType->beh.gcGetRefCount; if( scriptFunctions[ot->beh.gcGetRefCount] ) scriptFunctions[ot->beh.gcGetRefCount]->AddRefInternal(); ot->beh.gcSetFlag = templateType->beh.gcSetFlag; if( scriptFunctions[ot->beh.gcSetFlag] ) scriptFunctions[ot->beh.gcSetFlag]->AddRefInternal(); ot->beh.gcGetFlag = templateType->beh.gcGetFlag; if( scriptFunctions[ot->beh.gcGetFlag] ) scriptFunctions[ot->beh.gcGetFlag]->AddRefInternal(); ot->beh.gcEnumReferences = templateType->beh.gcEnumReferences; if( scriptFunctions[ot->beh.gcEnumReferences] ) scriptFunctions[ot->beh.gcEnumReferences]->AddRefInternal(); ot->beh.gcReleaseAllReferences = templateType->beh.gcReleaseAllReferences; if( scriptFunctions[ot->beh.gcReleaseAllReferences] ) scriptFunctions[ot->beh.gcReleaseAllReferences]->AddRefInternal(); ot->beh.getWeakRefFlag = templateType->beh.getWeakRefFlag; if( scriptFunctions[ot->beh.getWeakRefFlag] ) scriptFunctions[ot->beh.getWeakRefFlag]->AddRefInternal(); // As the new template type is instantiated, the engine should // generate new functions to substitute the ones with the template subtype. for( n = 0; n < ot->methods.GetLength(); n++ ) { int funcId = ot->methods[n]; asCScriptFunction *func = scriptFunctions[funcId]; if( GenerateNewTemplateFunction(templateType, ot, func, &func) ) { // Release the old function, the new one already has its ref count set to 1 scriptFunctions[funcId]->ReleaseInternal(); ot->methods[n] = func->id; } } // Increase ref counter for sub type if it is an object type for( n = 0; n < ot->templateSubTypes.GetLength(); n++ ) if( ot->templateSubTypes[n].GetTypeInfo() ) ot->templateSubTypes[n].GetTypeInfo()->AddRefInternal(); // Copy the properties to the template instance for( n = 0; n < templateType->properties.GetLength(); n++ ) { asCObjectProperty *prop = templateType->properties[n]; ot->properties.PushLast(asNEW(asCObjectProperty)(*prop)); if( prop->type.GetTypeInfo() ) prop->type.GetTypeInfo()->AddRefInternal(); } return ot; } // interface asILockableSharedBool *asCScriptEngine::GetWeakRefFlagOfScriptObject(void *obj, const asITypeInfo *type) const { // Make sure it is not a null pointer if( obj == 0 || type == 0 ) return 0; const asCObjectType *objType = static_cast(type); asILockableSharedBool *dest = 0; if( objType->beh.getWeakRefFlag ) { // Call the getweakrefflag behaviour dest = reinterpret_cast(CallObjectMethodRetPtr(obj, objType->beh.getWeakRefFlag)); } return dest; } // internal // orig is the parameter type that is to be replaced // tmpl is the registered template. Used to find which subtype is being replaced // ot is the new template instance that is being created. Used to find the target type asCDataType asCScriptEngine::DetermineTypeForTemplate(const asCDataType &orig, asCObjectType *tmpl, asCObjectType *ot) { asCDataType dt; if( orig.GetTypeInfo() && (orig.GetTypeInfo()->flags & asOBJ_TEMPLATE_SUBTYPE) ) { bool found = false; for( asUINT n = 0; n < tmpl->templateSubTypes.GetLength(); n++ ) { if( orig.GetTypeInfo() == tmpl->templateSubTypes[n].GetTypeInfo() ) { found = true; dt = ot->templateSubTypes[n]; if( orig.IsObjectHandle() && !ot->templateSubTypes[n].IsObjectHandle() ) { dt.MakeHandle(true, true); asASSERT(dt.IsObjectHandle()); if( orig.IsHandleToConst() ) dt.MakeHandleToConst(true); dt.MakeReference(orig.IsReference()); dt.MakeReadOnly(orig.IsReadOnly()); } else { // The target type is a handle, then check if the application // wants this handle to be to a const object. This is done by // flagging the type with 'if_handle_then_const' in the declaration. if (dt.IsObjectHandle() && orig.HasIfHandleThenConst()) dt.MakeHandleToConst(true); dt.MakeReference(orig.IsReference()); dt.MakeReadOnly(ot->templateSubTypes[n].IsReadOnly() || orig.IsReadOnly()); // If the target is a @& then don't make the handle const, // as it is not possible to declare functions with @const & if (orig.IsReference() && dt.IsObjectHandle()) dt.MakeReadOnly(false); } break; } } asASSERT( found ); UNUSED_VAR( found ); } else if( orig.GetTypeInfo() == tmpl ) { if( orig.IsObjectHandle() ) dt = asCDataType::CreateObjectHandle(ot, false); else dt = asCDataType::CreateType(ot, false); dt.MakeReference(orig.IsReference()); dt.MakeReadOnly(orig.IsReadOnly()); } else if( orig.GetTypeInfo() && (orig.GetTypeInfo()->flags & asOBJ_TEMPLATE) ) { // The type is itself a template, so it is necessary to find the correct template instance type asCArray tmplSubTypes; asCObjectType *origType = CastToObjectType(orig.GetTypeInfo()); bool needInstance = true; // Find the matching replacements for the subtypes for( asUINT n = 0; n < origType->templateSubTypes.GetLength(); n++ ) { if( origType->templateSubTypes[n].GetTypeInfo() == 0 || !(origType->templateSubTypes[n].GetTypeInfo()->flags & asOBJ_TEMPLATE_SUBTYPE) ) { // The template is already an instance so we shouldn't attempt to create another instance needInstance = false; break; } for( asUINT m = 0; m < tmpl->templateSubTypes.GetLength(); m++ ) if( origType->templateSubTypes[n].GetTypeInfo() == tmpl->templateSubTypes[m].GetTypeInfo() ) tmplSubTypes.PushLast(ot->templateSubTypes[m]); if( tmplSubTypes.GetLength() != n+1 ) { asASSERT( false ); return orig; } } asCObjectType *ntype = origType; if( needInstance ) { // Always find the original template type when creating a new template instance otherwise the // generation will fail since it will attempt to create factory stubs when they already exists, etc for( asUINT n = 0; n < registeredTemplateTypes.GetLength(); n++ ) if( registeredTemplateTypes[n]->name == origType->name && registeredTemplateTypes[n]->nameSpace == origType->nameSpace ) { origType = registeredTemplateTypes[n]; break; } ntype = GetTemplateInstanceType(origType, tmplSubTypes, ot->module); if( ntype == 0 ) { // It not possible to instantiate the subtype asASSERT( false ); ntype = tmpl; } } if( orig.IsObjectHandle() ) dt = asCDataType::CreateObjectHandle(ntype, false); else dt = asCDataType::CreateType(ntype, false); dt.MakeReference(orig.IsReference()); dt.MakeReadOnly(orig.IsReadOnly()); } else if (orig.GetTypeInfo() && (orig.GetTypeInfo()->flags & asOBJ_FUNCDEF) && CastToFuncdefType(orig.GetTypeInfo())->parentClass == tmpl) { // The type is a child funcdef. Find the corresponding child funcdef in the template instance for (asUINT n = 0; n < ot->childFuncDefs.GetLength(); n++) { if (ot->childFuncDefs[n]->name == orig.GetTypeInfo()->name) { dt = orig; dt.SetTypeInfo(ot->childFuncDefs[n]); } } } else dt = orig; return dt; } // internal asCScriptFunction *asCScriptEngine::GenerateTemplateFactoryStub(asCObjectType *templateType, asCObjectType *ot, int factoryId) { asCScriptFunction *factory = scriptFunctions[factoryId]; // By first instantiating the function as a dummy and then changing it to be a script function // I avoid having it added to the garbage collector. As it is known that this object will stay // alive until the template instance is no longer used there is no need to have the GC check // this function all the time. asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_DUMMY); if( func == 0 ) { // Out of memory return 0; } func->funcType = asFUNC_SCRIPT; func->AllocateScriptFunctionData(); func->id = GetNextScriptFunctionId(); AddScriptFunction(func); func->traits = factory->traits; func->SetShared(true); if( templateType->flags & asOBJ_REF ) { func->name = "$fact"; func->returnType = asCDataType::CreateObjectHandle(ot, false); } else { func->name = "$beh0"; func->returnType = factory->returnType; // constructors return nothing func->objectType = ot; func->objectType->AddRefInternal(); } // Skip the first parameter as this is the object type pointer that the stub will add func->parameterTypes.SetLength(factory->parameterTypes.GetLength()-1); func->parameterNames.SetLength(factory->parameterNames.GetLength()-1); func->inOutFlags.SetLength(factory->inOutFlags.GetLength()-1); func->defaultArgs.SetLength(factory->defaultArgs.GetLength()-1); for( asUINT p = 1; p < factory->parameterTypes.GetLength(); p++ ) { func->parameterTypes[p-1] = factory->parameterTypes[p]; func->parameterNames[p-1] = factory->parameterNames[p]; func->inOutFlags[p-1] = factory->inOutFlags[p]; func->defaultArgs[p-1] = factory->defaultArgs[p] ? asNEW(asCString)(*factory->defaultArgs[p]) : 0; } func->scriptData->objVariablesOnHeap = 0; // Generate the bytecode for the factory stub asUINT bcLength = asBCTypeSize[asBCInfo[asBC_OBJTYPE].type] + asBCTypeSize[asBCInfo[asBC_CALLSYS].type] + asBCTypeSize[asBCInfo[asBC_RET].type]; if( ep.includeJitInstructions ) bcLength += asBCTypeSize[asBCInfo[asBC_JitEntry].type]; if( templateType->flags & asOBJ_VALUE ) bcLength += asBCTypeSize[asBCInfo[asBC_SwapPtr].type]; func->scriptData->byteCode.SetLength(bcLength); asDWORD *bc = func->scriptData->byteCode.AddressOf(); if( ep.includeJitInstructions ) { *(asBYTE*)bc = asBC_JitEntry; *(asPWORD*)(bc+1) = 0; bc += asBCTypeSize[asBCInfo[asBC_JitEntry].type]; } *(asBYTE*)bc = asBC_OBJTYPE; *(asPWORD*)(bc+1) = (asPWORD)ot; bc += asBCTypeSize[asBCInfo[asBC_OBJTYPE].type]; if( templateType->flags & asOBJ_VALUE ) { // Swap the object pointer with the object type *(asBYTE*)bc = asBC_SwapPtr; bc += asBCTypeSize[asBCInfo[asBC_SwapPtr].type]; } *(asBYTE*)bc = asBC_CALLSYS; *(asDWORD*)(bc+1) = factoryId; bc += asBCTypeSize[asBCInfo[asBC_CALLSYS].type]; *(asBYTE*)bc = asBC_RET; *(((asWORD*)bc)+1) = (asWORD)func->GetSpaceNeededForArguments() + (func->objectType ? AS_PTR_SIZE : 0); func->AddReferences(); func->scriptData->stackNeeded = AS_PTR_SIZE; // Tell the virtual machine not to clean up the object on exception func->dontCleanUpOnException = true; func->JITCompile(); // Need to translate the list pattern too so the VM and compiler will know the correct type of the members if( factory->listPattern ) { asSListPatternNode *n = factory->listPattern; asSListPatternNode *last = 0; while( n ) { asSListPatternNode *newNode = n->Duplicate(); if( newNode->type == asLPT_TYPE ) { asSListPatternDataTypeNode *typeNode = reinterpret_cast(newNode); typeNode->dataType = DetermineTypeForTemplate(typeNode->dataType, templateType, ot); } if( last ) last->next = newNode; else func->listPattern = newNode; last = newNode; n = n->next; } } return func; } bool asCScriptEngine::RequireTypeReplacement(asCDataType &type, asCObjectType *templateType) { if( type.GetTypeInfo() == templateType ) return true; if( type.GetTypeInfo() && (type.GetTypeInfo()->flags & asOBJ_TEMPLATE_SUBTYPE) ) return true; if( type.GetTypeInfo() && (type.GetTypeInfo()->flags & asOBJ_TEMPLATE) ) { asCObjectType *ot = CastToObjectType(type.GetTypeInfo()); for( asUINT n = 0; n < ot->templateSubTypes.GetLength(); n++ ) if( ot->templateSubTypes[n].GetTypeInfo() && ot->templateSubTypes[n].GetTypeInfo()->flags & asOBJ_TEMPLATE_SUBTYPE ) return true; } if (type.GetTypeInfo() && (type.GetTypeInfo()->flags & asOBJ_FUNCDEF) && CastToFuncdefType(type.GetTypeInfo())->parentClass == templateType) return true; return false; } bool asCScriptEngine::GenerateNewTemplateFunction(asCObjectType *templateType, asCObjectType *ot, asCScriptFunction *func, asCScriptFunction **newFunc) { // Due to the objectType it is always required to generate a new function, // even if none of the function arguments needs to be changed. /* // TODO: Can we store the new function in some other optimized way to avoid // duplicating all information just because of the different objectType member? bool needNewFunc = false; if( RequireTypeReplacement(func->returnType, templateType) ) needNewFunc = true; else { for( asUINT p = 0; p < func->parameterTypes.GetLength(); p++ ) { if( RequireTypeReplacement(func->parameterTypes[p], templateType) ) { needNewFunc = true; break; } } } if( !needNewFunc ) return false; */ asCScriptFunction *func2 = asNEW(asCScriptFunction)(this, 0, func->funcType); if( func2 == 0 ) { // Out of memory return false; } func2->name = func->name; func2->returnType = DetermineTypeForTemplate(func->returnType, templateType, ot); func2->parameterTypes.SetLength(func->parameterTypes.GetLength()); for (asUINT p = 0; p < func->parameterTypes.GetLength(); p++) func2->parameterTypes[p] = DetermineTypeForTemplate(func->parameterTypes[p], templateType, ot); for (asUINT n = 0; n < func->defaultArgs.GetLength(); n++) if (func->defaultArgs[n]) func2->defaultArgs.PushLast(asNEW(asCString)(*func->defaultArgs[n])); else func2->defaultArgs.PushLast(0); // TODO: template: Must be careful when instantiating templates for garbage collected types // If the template hasn't been registered with the behaviours, it shouldn't // permit instantiation of garbage collected types that in turn may refer to // this instance. func2->parameterNames = func->parameterNames; func2->inOutFlags = func->inOutFlags; func2->traits = func->traits; func2->SetReadOnly(func->IsReadOnly()); func2->objectType = ot; func2->objectType->AddRefInternal(); func2->sysFuncIntf = asNEW(asSSystemFunctionInterface)(*func->sysFuncIntf); // Adjust the clean up instructions if( func2->sysFuncIntf->callConv == ICC_GENERIC_FUNC || func2->sysFuncIntf->callConv == ICC_GENERIC_METHOD ) PrepareSystemFunctionGeneric(func2, func2->sysFuncIntf, this); else PrepareSystemFunction(func2, func2->sysFuncIntf, this); func2->id = GetNextScriptFunctionId(); AddScriptFunction(func2); // Return the new function *newFunc = func2; return true; } asCFuncdefType *asCScriptEngine::GenerateNewTemplateFuncdef(asCObjectType *templateType, asCObjectType *ot, asCFuncdefType *func) { // TODO: Only generate the new funcdef if it used the template subtypes. // Remember to also update the clean up in asCObjectType::DestroyInternal so it doesn't delete // child funcdefs that have not been created specificially for the template instance. // Perhaps a new funcdef is always needed, since the funcdef will have a reference to the // parent class (in this case the template instance). asCScriptFunction *func2 = asNEW(asCScriptFunction)(this, 0, func->funcdef->funcType); if (func2 == 0) { // Out of memory return 0; } func2->name = func->name; func2->returnType = DetermineTypeForTemplate(func->funcdef->returnType, templateType, ot); func2->parameterTypes.SetLength(func->funcdef->parameterTypes.GetLength()); for (asUINT p = 0; p < func->funcdef->parameterTypes.GetLength(); p++) func2->parameterTypes[p] = DetermineTypeForTemplate(func->funcdef->parameterTypes[p], templateType, ot); // TODO: template: Must be careful when instantiating templates for garbage collected types // If the template hasn't been registered with the behaviours, it shouldn't // permit instantiation of garbage collected types that in turn may refer to // this instance. func2->inOutFlags = func->funcdef->inOutFlags; func2->SetReadOnly(func->funcdef->IsReadOnly()); asASSERT(func->funcdef->objectType == 0); asASSERT(func->funcdef->sysFuncIntf == 0); func2->id = GetNextScriptFunctionId(); AddScriptFunction(func2); asCFuncdefType *fdt2 = asNEW(asCFuncdefType)(this, func2); funcDefs.PushLast(fdt2); // don't increase refCount as the constructor already set it to 1 // Return the new function return fdt2; } void asCScriptEngine::CallObjectMethod(void *obj, int func) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); CallObjectMethod(obj, s->sysFuncIntf, s); } void asCScriptEngine::CallObjectMethod(void *obj, asSSystemFunctionInterface *i, asCScriptFunction *s) const { #if defined(__GNUC__) || defined(AS_PSVITA) if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); } else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL ) { // For virtual thiscalls we must call the method as a true class method // so that the compiler will lookup the function address in the vftable union { asSIMPLEMETHOD_t mthd; struct { asFUNCTION_t func; asPWORD baseOffset; // Same size as the pointer } f; } p; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); p.f.func = (asFUNCTION_t)(i->func); p.f.baseOffset = asPWORD(i->baseOffset); void (asCSimpleDummy::*f)() = p.mthd; (((asCSimpleDummy*)obj)->*f)(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { void (*f)(void *) = (void (*)(void *))(i->func); f(obj); } #else #ifndef AS_NO_CLASS_METHODS if( i->callConv == ICC_THISCALL ) { union { asSIMPLEMETHOD_t mthd; asFUNCTION_t func; } p; p.func = (asFUNCTION_t)(i->func); void (asCSimpleDummy::*f)() = p.mthd; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); obj = (void*)(asPWORD(obj) + i->baseOffset); (((asCSimpleDummy*)obj)->*f)(); } else #endif if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { void (*f)(void *) = (void (*)(void *))(i->func); f(obj); } #endif } bool asCScriptEngine::CallObjectMethodRetBool(void *obj, int func) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); asSSystemFunctionInterface *i = s->sysFuncIntf; #if defined(__GNUC__) || defined(AS_PSVITA) if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(bool*)gen.GetReturnPointer(); } else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL ) { // For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable union { asSIMPLEMETHOD_t mthd; struct { asFUNCTION_t func; asPWORD baseOffset; } f; } p; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); p.f.func = (asFUNCTION_t)(i->func); p.f.baseOffset = asPWORD(i->baseOffset); bool (asCSimpleDummy::*f)() = (bool (asCSimpleDummy::*)())(p.mthd); return (((asCSimpleDummy*)obj)->*f)(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { bool (*f)(void *) = (bool (*)(void *))(i->func); return f(obj); } #else #ifndef AS_NO_CLASS_METHODS if( i->callConv == ICC_THISCALL ) { union { asSIMPLEMETHOD_t mthd; asFUNCTION_t func; } p; p.func = (asFUNCTION_t)(i->func); bool (asCSimpleDummy::*f)() = (bool (asCSimpleDummy::*)())p.mthd; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); obj = (void*)(asPWORD(obj) + i->baseOffset); return (((asCSimpleDummy*)obj)->*f)(); } else #endif if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(bool*)gen.GetReturnPointer(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { bool (*f)(void *) = (bool (*)(void *))(i->func); return f(obj); } #endif } int asCScriptEngine::CallObjectMethodRetInt(void *obj, int func) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); asSSystemFunctionInterface *i = s->sysFuncIntf; #if defined(__GNUC__) || defined(AS_PSVITA) if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(int*)gen.GetReturnPointer(); } else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL ) { // For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable union { asSIMPLEMETHOD_t mthd; struct { asFUNCTION_t func; asPWORD baseOffset; } f; } p; p.f.func = (asFUNCTION_t)(i->func); p.f.baseOffset = asPWORD(i->baseOffset); obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); int (asCSimpleDummy::*f)() = (int (asCSimpleDummy::*)())(p.mthd); return (((asCSimpleDummy*)obj)->*f)(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { int (*f)(void *) = (int (*)(void *))(i->func); return f(obj); } #else #ifndef AS_NO_CLASS_METHODS if( i->callConv == ICC_THISCALL ) { union { asSIMPLEMETHOD_t mthd; asFUNCTION_t func; } p; p.func = (asFUNCTION_t)(i->func); int (asCSimpleDummy::*f)() = (int (asCSimpleDummy::*)())p.mthd; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); obj = (void*)(asPWORD(obj) + i->baseOffset); return (((asCSimpleDummy*)obj)->*f)(); } else #endif if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(int*)gen.GetReturnPointer(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { int (*f)(void *) = (int (*)(void *))(i->func); return f(obj); } #endif } void *asCScriptEngine::CallObjectMethodRetPtr(void *obj, int func) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); asSSystemFunctionInterface *i = s->sysFuncIntf; #if defined(__GNUC__) || defined(AS_PSVITA) if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(void**)gen.GetReturnPointer(); } else if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL ) { // For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable union { asSIMPLEMETHOD_t mthd; struct { asFUNCTION_t func; asPWORD baseOffset; } f; } p; p.f.func = (asFUNCTION_t)(i->func); p.f.baseOffset = asPWORD(i->baseOffset); obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); void *(asCSimpleDummy::*f)() = (void *(asCSimpleDummy::*)())(p.mthd); return (((asCSimpleDummy*)obj)->*f)(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { void *(*f)(void *) = (void *(*)(void *))(i->func); return f(obj); } #else #ifndef AS_NO_CLASS_METHODS if( i->callConv == ICC_THISCALL ) { union { asSIMPLEMETHOD_t mthd; asFUNCTION_t func; } p; p.func = (asFUNCTION_t)(i->func); void *(asCSimpleDummy::*f)() = (void *(asCSimpleDummy::*)())p.mthd; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); obj = (void*)(asPWORD(obj) + i->baseOffset); return (((asCSimpleDummy*)obj)->*f)(); } else #endif if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(void **)gen.GetReturnPointer(); } else /*if( i->callConv == ICC_CDECL_OBJLAST || i->callConv == ICC_CDECL_OBJFIRST )*/ { void *(*f)(void *) = (void *(*)(void *))(i->func); return f(obj); } #endif } void *asCScriptEngine::CallObjectMethodRetPtr(void *obj, int param1, asCScriptFunction *func) const { asASSERT( obj != 0 ); asASSERT( func != 0 ); asSSystemFunctionInterface *i = func->sysFuncIntf; #ifndef AS_NO_CLASS_METHODS if( i->callConv == ICC_THISCALL || i->callConv == ICC_VIRTUAL_THISCALL ) { #if defined(__GNUC__) || defined(AS_PSVITA) // For virtual thiscalls we must call the method as a true class method so that the compiler will lookup the function address in the vftable union { asSIMPLEMETHOD_t mthd; struct { asFUNCTION_t func; asPWORD baseOffset; } f; } p; p.f.func = (asFUNCTION_t)(i->func); p.f.baseOffset = asPWORD(i->baseOffset); obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); void *(asCSimpleDummy::*f)(int) = (void *(asCSimpleDummy::*)(int))(p.mthd); return (((asCSimpleDummy*)obj)->*f)(param1); #else union { asSIMPLEMETHOD_t mthd; asFUNCTION_t func; } p; p.func = (asFUNCTION_t)(i->func); void *(asCSimpleDummy::*f)(int) = (void *(asCSimpleDummy::*)(int))p.mthd; obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); obj = (void*)(asPWORD(obj) + i->baseOffset); return (((asCSimpleDummy*)obj)->*f)(param1); #endif } else #endif if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), func, obj, reinterpret_cast(¶m1)); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(void **)gen.GetReturnPointer(); } else if( i->callConv == ICC_CDECL_OBJLAST ) { void *(*f)(int, void *) = (void *(*)(int, void *))(i->func); return f(param1, obj); } else /*if( i->callConv == ICC_CDECL_OBJFIRST )*/ { void *(*f)(void *, int) = (void *(*)(void *, int))(i->func); return f(obj, param1); } } void *asCScriptEngine::CallGlobalFunctionRetPtr(int func) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); return CallGlobalFunctionRetPtr(s->sysFuncIntf, s); } void *asCScriptEngine::CallGlobalFunctionRetPtr(int func, void *param1) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); return CallGlobalFunctionRetPtr(s->sysFuncIntf, s, param1); } void *asCScriptEngine::CallGlobalFunctionRetPtr(asSSystemFunctionInterface *i, asCScriptFunction *s) const { if( i->callConv == ICC_CDECL ) { void *(*f)() = (void *(*)())(i->func); return f(); } else if( i->callConv == ICC_STDCALL ) { typedef void *(STDCALL *func_t)(); func_t f = (func_t)(i->func); return f(); } else { asCGeneric gen(const_cast(this), s, 0, 0); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(void**)gen.GetReturnPointer(); } } void *asCScriptEngine::CallGlobalFunctionRetPtr(asSSystemFunctionInterface *i, asCScriptFunction *s, void *param1) const { if( i->callConv == ICC_CDECL ) { void *(*f)(void *) = (void *(*)(void *))(i->func); return f(param1); } else if( i->callConv == ICC_STDCALL ) { typedef void *(STDCALL *func_t)(void *); func_t f = (func_t)(i->func); return f(param1); } else { asCGeneric gen(const_cast(this), s, 0, (asDWORD*)¶m1); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(void**)gen.GetReturnPointer(); } } void asCScriptEngine::CallObjectMethod(void *obj, void *param, int func) const { asCScriptFunction *s = scriptFunctions[func]; asASSERT( s != 0 ); CallObjectMethod(obj, param, s->sysFuncIntf, s); } void asCScriptEngine::CallObjectMethod(void *obj, void *param, asSSystemFunctionInterface *i, asCScriptFunction *s) const { #if defined(__GNUC__) || defined(AS_PSVITA) if( i->callConv == ICC_CDECL_OBJLAST ) { void (*f)(void *, void *) = (void (*)(void *, void *))(i->func); f(param, obj); } else if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, (asDWORD*)¶m); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); } else if( i->callConv == ICC_VIRTUAL_THISCALL || i->callConv == ICC_THISCALL ) { // For virtual thiscalls we must call the method as a true class method // so that the compiler will lookup the function address in the vftable union { asSIMPLEMETHOD_t mthd; struct { asFUNCTION_t func; asPWORD baseOffset; // Same size as the pointer } f; } p; p.f.func = (asFUNCTION_t)(i->func); p.f.baseOffset = asPWORD(i->baseOffset); obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); void (asCSimpleDummy::*f)(void*) = (void (asCSimpleDummy::*)(void*))(p.mthd); (((asCSimpleDummy*)obj)->*f)(param); } else /*if( i->callConv == ICC_CDECL_OBJFIRST */ { void (*f)(void *, void *) = (void (*)(void *, void *))(i->func); f(obj, param); } #else #ifndef AS_NO_CLASS_METHODS if( i->callConv == ICC_THISCALL ) { union { asSIMPLEMETHOD_t mthd; asFUNCTION_t func; } p; p.func = (asFUNCTION_t)(i->func); void (asCSimpleDummy::*f)(void *) = (void (asCSimpleDummy::*)(void *))(p.mthd); obj = (void*) ((char*) obj + i->compositeOffset); if(i->isCompositeIndirect) obj = *((void**)obj); obj = (void*)(asPWORD(obj) + i->baseOffset); (((asCSimpleDummy*)obj)->*f)(param); } else #endif if( i->callConv == ICC_CDECL_OBJLAST ) { void (*f)(void *, void *) = (void (*)(void *, void *))(i->func); f(param, obj); } else if( i->callConv == ICC_GENERIC_METHOD ) { asCGeneric gen(const_cast(this), s, obj, (asDWORD*)¶m); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); } else /*if( i->callConv == ICC_CDECL_OBJFIRST )*/ { void (*f)(void *, void *) = (void (*)(void *, void *))(i->func); f(obj, param); } #endif } void asCScriptEngine::CallGlobalFunction(void *param1, void *param2, asSSystemFunctionInterface *i, asCScriptFunction *s) const { if( i->callConv == ICC_CDECL ) { void (*f)(void *, void *) = (void (*)(void *, void *))(i->func); f(param1, param2); } else if( i->callConv == ICC_STDCALL ) { typedef void (STDCALL *func_t)(void *, void *); func_t f = (func_t)(i->func); f(param1, param2); } else { // We must guarantee the order of the arguments which is why we copy them to this // array. Otherwise the compiler may put them anywhere it likes, or even keep them // in the registers which causes problem. void *params[2] = {param1, param2}; asCGeneric gen(const_cast(this), s, 0, (asDWORD*)¶ms); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); } } bool asCScriptEngine::CallGlobalFunctionRetBool(void *param1, void *param2, asSSystemFunctionInterface *i, asCScriptFunction *s) const { if( i->callConv == ICC_CDECL ) { bool (*f)(void *, void *) = (bool (*)(void *, void *))(i->func); return f(param1, param2); } else if( i->callConv == ICC_STDCALL ) { typedef bool (STDCALL *func_t)(void *, void *); func_t f = (func_t)(i->func); return f(param1, param2); } else { // TODO: When simulating a 64bit environment by defining AS_64BIT_PTR on a 32bit platform this code // fails, because the stack given to asCGeneric is not prepared with two 64bit arguments. // We must guarantee the order of the arguments which is why we copy them to this // array. Otherwise the compiler may put them anywhere it likes, or even keep them // in the registers which causes problem. void *params[2] = {param1, param2}; asCGeneric gen(const_cast(this), s, 0, (asDWORD*)params); void (*f)(asIScriptGeneric *) = (void (*)(asIScriptGeneric *))(i->func); f(&gen); return *(bool*)gen.GetReturnPointer(); } } void *asCScriptEngine::CallAlloc(const asCObjectType *type) const { // Allocate 4 bytes as the smallest size. Otherwise CallSystemFunction may try to // copy a DWORD onto a smaller memory block, in case the object type is return in registers. // Pad to the next even 4 bytes to avoid asBC_CPY writing outside of allocated buffer for registered POD types asUINT size = type->size; if( size & 0x3 ) size += 4 - (size & 0x3); #ifndef WIP_16BYTE_ALIGN #if defined(AS_DEBUG) return ((asALLOCFUNCDEBUG_t)userAlloc)(size, __FILE__, __LINE__); #else return userAlloc(size); #endif #else #if defined(AS_DEBUG) return ((asALLOCALIGNEDFUNCDEBUG_t)userAllocAligned)(size, type->alignment, __FILE__, __LINE__); #else return userAllocAligned(size, type->alignment); #endif #endif } void asCScriptEngine::CallFree(void *obj) const { #ifndef WIP_16BYTE_ALIGN userFree(obj); #else userFreeAligned(obj); #endif } // interface int asCScriptEngine::NotifyGarbageCollectorOfNewObject(void *obj, asITypeInfo *type) { return gc.AddScriptObjectToGC(obj, static_cast(type)); } // interface int asCScriptEngine::GetObjectInGC(asUINT idx, asUINT *seqNbr, void **obj, asITypeInfo **type) { return gc.GetObjectInGC(idx, seqNbr, obj, type); } // interface int asCScriptEngine::GarbageCollect(asDWORD flags, asUINT iterations) { int r = gc.GarbageCollect(flags, iterations); if( r == 0 ) { // Delete any modules that have been discarded previously but not // removed due to being referred to by objects in the garbage collector DeleteDiscardedModules(); } return r; } // interface void asCScriptEngine::GetGCStatistics(asUINT *currentSize, asUINT *totalDestroyed, asUINT *totalDetected, asUINT *newObjects, asUINT *totalNewDestroyed) const { gc.GetStatistics(currentSize, totalDestroyed, totalDetected, newObjects, totalNewDestroyed); } // interface void asCScriptEngine::GCEnumCallback(void *reference) { gc.GCEnumCallback(reference); } // interface void asCScriptEngine::ForwardGCEnumReferences(void *ref, asITypeInfo *type) { asCTypeInfo *t = reinterpret_cast(type); if ((t->flags & asOBJ_VALUE) && (t->flags & asOBJ_GC)) { CallObjectMethod(ref, this, CastToObjectType(t)->beh.gcEnumReferences); } } // interface void asCScriptEngine::ForwardGCReleaseReferences(void *ref, asITypeInfo *type) { asCTypeInfo *t = reinterpret_cast(type); if ((t->flags & asOBJ_VALUE) && (t->flags & asOBJ_GC)) { CallObjectMethod(ref, this, CastToObjectType(t)->beh.gcReleaseAllReferences); } } // interface void asCScriptEngine::SetCircularRefDetectedCallback(asCIRCULARREFFUNC_t callback, void *param) { gc.circularRefDetectCallbackFunc = callback; gc.circularRefDetectCallbackParam = param; } int asCScriptEngine::GetTypeIdFromDataType(const asCDataType &dtIn) const { if( dtIn.IsNullHandle() ) return asTYPEID_VOID; if( dtIn.GetTypeInfo() == 0 ) { // Primitives have pre-fixed typeIds switch( dtIn.GetTokenType() ) { case ttVoid: return asTYPEID_VOID; case ttBool: return asTYPEID_BOOL; case ttInt8: return asTYPEID_INT8; case ttInt16: return asTYPEID_INT16; case ttInt: return asTYPEID_INT32; case ttInt64: return asTYPEID_INT64; case ttUInt8: return asTYPEID_UINT8; case ttUInt16: return asTYPEID_UINT16; case ttUInt: return asTYPEID_UINT32; case ttUInt64: return asTYPEID_UINT64; case ttFloat: return asTYPEID_FLOAT; case ttDouble: return asTYPEID_DOUBLE; default: // All types should be covered by the above. The variable type is not really a type asASSERT(dtIn.GetTokenType() == ttQuestion); return -1; } } int typeId = -1; asCTypeInfo *ot = dtIn.GetTypeInfo(); asASSERT(ot != &functionBehaviours); // Object's hold the typeId themselves typeId = ot->typeId; if( typeId == -1 ) { ACQUIREEXCLUSIVE(engineRWLock); // Make sure another thread didn't determine the typeId while we were waiting for the lock if( ot->typeId == -1 ) { typeId = typeIdSeqNbr++; if( ot->flags & asOBJ_SCRIPT_OBJECT ) typeId |= asTYPEID_SCRIPTOBJECT; else if( ot->flags & asOBJ_TEMPLATE ) typeId |= asTYPEID_TEMPLATE; else if( ot->flags & asOBJ_ENUM ) {} // TODO: Should we have a specific bit for this? else typeId |= asTYPEID_APPOBJECT; ot->typeId = typeId; mapTypeIdToTypeInfo.Insert(typeId, ot); } RELEASEEXCLUSIVE(engineRWLock); } // Add flags according to the requested type if( dtIn.GetTypeInfo() && !(dtIn.GetTypeInfo()->flags & asOBJ_ASHANDLE) ) { // The ASHANDLE types behave like handles, but are really // value types so the typeId is never returned as a handle if( dtIn.IsObjectHandle() ) typeId |= asTYPEID_OBJHANDLE; if( dtIn.IsHandleToConst() ) typeId |= asTYPEID_HANDLETOCONST; } return typeId; } asCDataType asCScriptEngine::GetDataTypeFromTypeId(int typeId) const { int baseId = typeId & (asTYPEID_MASK_OBJECT | asTYPEID_MASK_SEQNBR); if( typeId <= asTYPEID_DOUBLE ) { eTokenType type[] = {ttVoid, ttBool, ttInt8, ttInt16, ttInt, ttInt64, ttUInt8, ttUInt16, ttUInt, ttUInt64, ttFloat, ttDouble}; return asCDataType::CreatePrimitive(type[typeId], false); } // First check if the typeId is an object type asCTypeInfo *ot = 0; ACQUIRESHARED(engineRWLock); asSMapNode *cursor = 0; if( mapTypeIdToTypeInfo.MoveTo(&cursor, baseId) ) ot = mapTypeIdToTypeInfo.GetValue(cursor); RELEASESHARED(engineRWLock); if( ot ) { asCDataType dt = asCDataType::CreateType(ot, false); if( typeId & asTYPEID_OBJHANDLE ) dt.MakeHandle(true, true); if( typeId & asTYPEID_HANDLETOCONST ) dt.MakeHandleToConst(true); return dt; } return asCDataType(); } asCObjectType *asCScriptEngine::GetObjectTypeFromTypeId(int typeId) const { asCDataType dt = GetDataTypeFromTypeId(typeId); return CastToObjectType(dt.GetTypeInfo()); } void asCScriptEngine::RemoveFromTypeIdMap(asCTypeInfo *type) { ACQUIREEXCLUSIVE(engineRWLock); asSMapNode *cursor = 0; mapTypeIdToTypeInfo.MoveFirst(&cursor); while( cursor ) { if(mapTypeIdToTypeInfo.GetValue(cursor) == type ) { mapTypeIdToTypeInfo.Erase(cursor); break; } mapTypeIdToTypeInfo.MoveNext(&cursor, cursor); } RELEASEEXCLUSIVE(engineRWLock); } // interface asITypeInfo *asCScriptEngine::GetTypeInfoByDecl(const char *decl) const { asCDataType dt; // This cast is ok, because we are not changing anything in the engine asCBuilder bld(const_cast(this), 0); // Don't write parser errors to the message callback bld.silent = true; int r = bld.ParseDataType(decl, &dt, defaultNamespace); if (r < 0) return 0; return dt.GetTypeInfo(); } // interface int asCScriptEngine::GetTypeIdByDecl(const char *decl) const { asCDataType dt; // This cast is ok, because we are not changing anything in the engine asCBuilder bld(const_cast(this), 0); // Don't write parser errors to the message callback bld.silent = true; int r = bld.ParseDataType(decl, &dt, defaultNamespace); if( r < 0 ) return asINVALID_TYPE; return GetTypeIdFromDataType(dt); } // interface const char *asCScriptEngine::GetTypeDeclaration(int typeId, bool includeNamespace) const { asCDataType dt = GetDataTypeFromTypeId(typeId); asCString *tempString = &asCThreadManager::GetLocalData()->string; *tempString = dt.Format(defaultNamespace, includeNamespace); return tempString->AddressOf(); } // interface int asCScriptEngine::GetSizeOfPrimitiveType(int typeId) const { asCDataType dt = GetDataTypeFromTypeId(typeId); if( !dt.IsPrimitive() ) return 0; return dt.GetSizeInMemoryBytes(); } // interface int asCScriptEngine::RefCastObject(void *obj, asITypeInfo *fromType, asITypeInfo *toType, void **newPtr, bool useOnlyImplicitCast) { if( newPtr == 0 ) return asINVALID_ARG; *newPtr = 0; if( fromType == 0 || toType == 0 ) return asINVALID_ARG; // A null-pointer can always be cast to another type, so it will always be successful if( obj == 0 ) return asSUCCESS; if( fromType == toType ) { *newPtr = obj; AddRefScriptObject(*newPtr, toType); return asSUCCESS; } // Check for funcdefs if ((fromType->GetFlags() & asOBJ_FUNCDEF) && (toType->GetFlags() & asOBJ_FUNCDEF)) { asCFuncdefType *fromFunc = CastToFuncdefType(reinterpret_cast(fromType)); asCFuncdefType *toFunc = CastToFuncdefType(reinterpret_cast(toType)); if (fromFunc && toFunc && fromFunc->funcdef->IsSignatureExceptNameEqual(toFunc->funcdef)) { *newPtr = obj; AddRefScriptObject(*newPtr, toType); return asSUCCESS; } return asSUCCESS; } // Look for ref cast behaviours asCScriptFunction *universalCastFunc = 0; asCObjectType *from = reinterpret_cast(fromType); for( asUINT n = 0; n < from->methods.GetLength(); n++ ) { asCScriptFunction *func = scriptFunctions[from->methods[n]]; if( func->name == "opImplCast" || (!useOnlyImplicitCast && func->name == "opCast") ) { if( func->returnType.GetTypeInfo() == toType ) { *newPtr = CallObjectMethodRetPtr(obj, func->id); // The ref cast behaviour returns a handle with incremented // ref counter, so there is no need to call AddRef explicitly // unless the function is registered with autohandle if( func->sysFuncIntf->returnAutoHandle ) AddRefScriptObject(*newPtr, toType); return asSUCCESS; } else if( func->returnType.GetTokenType() == ttVoid && func->parameterTypes.GetLength() == 1 && func->parameterTypes[0].GetTokenType() == ttQuestion ) { universalCastFunc = func; } } } // One last chance if the object has a void opCast(?&out) behaviour if( universalCastFunc ) { // TODO: Add proper error handling asIScriptContext *ctx = RequestContext(); ctx->Prepare(universalCastFunc); ctx->SetObject(obj); ctx->SetArgVarType(0, newPtr, toType->GetTypeId() | asTYPEID_OBJHANDLE); ctx->Execute(); ReturnContext(ctx); // The opCast(?&out) method already incremented the // refCount so there is no need to do it manually return asSUCCESS; } // For script classes and interfaces there is a quick route if( (fromType->GetFlags() & asOBJ_SCRIPT_OBJECT) && (toType->GetFlags() & asOBJ_SCRIPT_OBJECT) ) { if( fromType == toType ) { *newPtr = obj; reinterpret_cast(*newPtr)->AddRef(); return asSUCCESS; } // Up casts to base class or interface can be done implicitly if( fromType->DerivesFrom(toType) || fromType->Implements(toType) ) { *newPtr = obj; reinterpret_cast(*newPtr)->AddRef(); return asSUCCESS; } // Down casts to derived class or from interface can only be done explicitly if( !useOnlyImplicitCast ) { // Get the true type of the object so the explicit cast can evaluate all possibilities asITypeInfo *trueType = reinterpret_cast(obj)->GetObjectType(); if (trueType->DerivesFrom(toType) || trueType->Implements(toType)) { *newPtr = obj; reinterpret_cast(*newPtr)->AddRef(); return asSUCCESS; } } } // The cast is not available, but it is still a success return asSUCCESS; } // interface void *asCScriptEngine::CreateScriptObject(const asITypeInfo *type) { if( type == 0 ) return 0; asCObjectType *objType = const_cast(reinterpret_cast(type)); void *ptr = 0; // Check that there is a default factory for ref types if( objType->beh.factory == 0 && (objType->flags & asOBJ_REF) ) { // TODO: How to report the reason the object couldn't be created, without writing to the message callback? optional argument with return code? // TODO: Warn about the invalid call to message callback. Make it an optional, so the warning can be turned off // asCString str; // str.Format(TXT_FAILED_IN_FUNC_s_s_d, "CreateScriptObject", errorNames[-asNO_FUNCTION], asNO_FUNCTION); // WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); return 0; } // Construct the object if( objType->flags & asOBJ_SCRIPT_OBJECT ) { // Call the script class' default factory with a context ptr = ScriptObjectFactory(objType, this); } else if( (objType->flags & asOBJ_TEMPLATE) && (objType->flags & asOBJ_REF) ) { // The registered factory that takes the object type is moved // to the construct behaviour when the type is instantiated #ifdef AS_NO_EXCEPTIONS ptr = CallGlobalFunctionRetPtr(objType->beh.construct, objType); #else try { ptr = CallGlobalFunctionRetPtr(objType->beh.construct, objType); } catch (...) { asCContext *ctx = reinterpret_cast(asGetActiveContext()); if (ctx) ctx->HandleAppException(); } #endif } else if( objType->flags & asOBJ_REF ) { // Call the default factory directly #ifdef AS_NO_EXCEPTIONS ptr = CallGlobalFunctionRetPtr(objType->beh.factory); #else try { ptr = CallGlobalFunctionRetPtr(objType->beh.factory); } catch(...) { asCContext *ctx = reinterpret_cast(asGetActiveContext()); if( ctx ) ctx->HandleAppException(); } #endif } else { // Make sure there is a default constructor or that it is a POD type if( objType->beh.construct == 0 && !(objType->flags & asOBJ_POD) ) { // TODO: How to report the reason the object couldn't be created, without writing to the message callback? optional argument with return code? // TODO: Warn about the invalid call to message callback. Make it an optional, so the warning can be turned off // asCString str; // str.Format(TXT_FAILED_IN_FUNC_s_s_d, "CreateScriptObject", errorNames[-asNO_FUNCTION], asNO_FUNCTION); // WriteMessage("", 0, 0, asMSGTYPE_ERROR, str.AddressOf()); return 0; } // Manually allocate the memory, then call the default constructor ptr = CallAlloc(objType); int funcIndex = objType->beh.construct; if (funcIndex) { if (objType->flags & asOBJ_TEMPLATE) { // Templates of value types create script functions as the constructors CallScriptObjectMethod(ptr, funcIndex); } else { #ifdef AS_NO_EXCEPTIONS CallObjectMethod(ptr, funcIndex); #else try { CallObjectMethod(ptr, funcIndex); } catch (...) { asCContext *ctx = reinterpret_cast(asGetActiveContext()); if (ctx) ctx->HandleAppException(); // Free the memory CallFree(ptr); ptr = 0; } #endif } } } return ptr; } // internal int asCScriptEngine::CallScriptObjectMethod(void *obj, int funcId) { asIScriptContext *ctx = 0; int r = 0; bool isNested = false; // Use nested call in the context if there is an active context ctx = asGetActiveContext(); if (ctx) { // It may not always be possible to reuse the current context, // in which case we'll have to create a new one any way. if (ctx->GetEngine() == this && ctx->PushState() == asSUCCESS) isNested = true; else ctx = 0; } if (ctx == 0) { // Request a context from the engine ctx = RequestContext(); if (ctx == 0) { // TODO: How to best report this failure? return asERROR; } } r = ctx->Prepare(scriptFunctions[funcId]); if (r < 0) { if (isNested) ctx->PopState(); else ReturnContext(ctx); // TODO: How to best report this failure? return asERROR; } // Set the object ctx->SetObject(obj); for (;;) { r = ctx->Execute(); // We can't allow this execution to be suspended // so resume the execution immediately if (r != asEXECUTION_SUSPENDED) break; } if (r != asEXECUTION_FINISHED) { if (isNested) { ctx->PopState(); // If the execution was aborted or an exception occurred, // then we should forward that to the outer execution. if (r == asEXECUTION_EXCEPTION) { // TODO: How to improve this exception ctx->SetException(TXT_EXCEPTION_IN_NESTED_CALL); } else if (r == asEXECUTION_ABORTED) ctx->Abort(); } else ReturnContext(ctx); // TODO: How to best report the error? return asERROR; } if (isNested) ctx->PopState(); else ReturnContext(ctx); return asSUCCESS; } // interface void *asCScriptEngine::CreateUninitializedScriptObject(const asITypeInfo *type) { // This function only works for script classes. Registered types cannot be created this way. if( type == 0 || !(type->GetFlags() & asOBJ_SCRIPT_OBJECT) ) return 0; asCObjectType *objType = const_cast(reinterpret_cast(type)); // Construct the object, but do not call the actual constructor that initializes the members // The initialization will be done by the application afterwards, e.g. through serialization. asCScriptObject *obj = reinterpret_cast(CallAlloc(objType)); // Pre-initialize the memory so there are no invalid pointers ScriptObject_ConstructUnitialized(objType, obj); return obj; } // interface void *asCScriptEngine::CreateScriptObjectCopy(void *origObj, const asITypeInfo *type) { if( origObj == 0 || type == 0 ) return 0; void *newObj = 0; const asCObjectType *ot = reinterpret_cast(type); if ((ot->flags & asOBJ_SCRIPT_OBJECT) && ot->beh.copyfactory) { // Call the script class' default factory with a context newObj = ScriptObjectCopyFactory(ot, origObj, this); } else if (ot->beh.copyfactory) { // Call the copy factory which will allocate the memory then copy the original object #ifdef AS_NO_EXCEPTIONS newObj = CallGlobalFunctionRetPtr(ot->beh.copyfactory, origObj); #else try { newObj = CallGlobalFunctionRetPtr(ot->beh.copyfactory, origObj); } catch (...) { asCContext *ctx = reinterpret_cast(asGetActiveContext()); if (ctx) ctx->HandleAppException(); } #endif } else if( ot->beh.copyconstruct ) { // Manually allocate the memory, then call the copy constructor newObj = CallAlloc(ot); #ifdef AS_NO_EXCEPTIONS CallObjectMethod(newObj, origObj, ot->beh.copyconstruct); #else try { CallObjectMethod(newObj, origObj, ot->beh.copyconstruct); } catch(...) { asCContext *ctx = reinterpret_cast(asGetActiveContext()); if( ctx ) ctx->HandleAppException(); // Free the memory CallFree(newObj); newObj = 0; } #endif } else { // Allocate the object and then do a value assign newObj = CreateScriptObject(type); if( newObj == 0 ) return 0; AssignScriptObject(newObj, origObj, type); } return newObj; } // internal void asCScriptEngine::ConstructScriptObjectCopy(void *mem, void *obj, asCObjectType *type) { if( type == 0 || mem == 0 || obj == 0 ) return; // This function is only meant to be used for value types asASSERT( type->flags & asOBJ_VALUE ); // Call the copy constructor if available, else call the default constructor followed by the opAssign int funcIndex = type->beh.copyconstruct; if( funcIndex ) { CallObjectMethod(mem, obj, funcIndex); } else { funcIndex = type->beh.construct; if( funcIndex ) CallObjectMethod(mem, funcIndex); AssignScriptObject(mem, obj, type); } } // interface int asCScriptEngine::AssignScriptObject(void *dstObj, void *srcObj, const asITypeInfo *type) { // TODO: Warn about invalid call in message stream (make it optional) if( type == 0 || dstObj == 0 || srcObj == 0 ) return asINVALID_ARG; const asCObjectType *objType = reinterpret_cast(type); // If value assign for ref types has been disabled, then don't do anything if the type is a ref type if (ep.disallowValueAssignForRefType && (objType->flags & asOBJ_REF) && !(objType->flags & asOBJ_SCOPED)) { asIScriptContext *ctx = asGetActiveContext(); if (ctx) ctx->SetException("Cannot do value assignment"); return asNOT_SUPPORTED; } // Must not copy if the opAssign is not available and the object is not a POD object if( objType->beh.copy ) { asCScriptFunction *func = scriptFunctions[objType->beh.copy]; if( func->funcType == asFUNC_SYSTEM ) CallObjectMethod(dstObj, srcObj, objType->beh.copy); else { // Call the script class' opAssign method asASSERT( objType->flags & asOBJ_SCRIPT_OBJECT ); reinterpret_cast(dstObj)->CopyFrom(reinterpret_cast(srcObj)); } } else if( objType->size && (objType->flags & asOBJ_POD) ) { memcpy(dstObj, srcObj, objType->size); } return asSUCCESS; } // interface void asCScriptEngine::AddRefScriptObject(void *obj, const asITypeInfo *type) { // Make sure it is not a null pointer if( obj == 0 || type == 0 ) return; const asCTypeInfo *ti = static_cast(type); if (ti->flags & asOBJ_FUNCDEF) { CallObjectMethod(obj, functionBehaviours.beh.addref); } else { asCObjectType *objType = CastToObjectType(const_cast(ti)); if (objType && objType->beh.addref) { // Call the addref behaviour CallObjectMethod(obj, objType->beh.addref); } } } // interface void asCScriptEngine::ReleaseScriptObject(void *obj, const asITypeInfo *type) { // Make sure it is not a null pointer if( obj == 0 || type == 0 ) return; const asCTypeInfo *ti = static_cast(type); if (ti->flags & asOBJ_FUNCDEF) { CallObjectMethod(obj, functionBehaviours.beh.release); } else { asCObjectType *objType = CastToObjectType(const_cast(ti)); if (objType && objType->flags & asOBJ_REF) { asASSERT((objType->flags & asOBJ_NOCOUNT) || objType->beh.release); if (objType->beh.release) { // Call the release behaviour CallObjectMethod(obj, objType->beh.release); } } else if( objType ) { // Call the destructor if (objType->beh.destruct) CallObjectMethod(obj, objType->beh.destruct); else if (objType->flags & asOBJ_LIST_PATTERN) DestroyList((asBYTE*)obj, objType); // We'll have to trust that the memory for the object was allocated with CallAlloc. // This is true if the object was created in the context, or with CreateScriptObject. // Then free the memory CallFree(obj); } } } // interface int asCScriptEngine::BeginConfigGroup(const char *groupName) { // Make sure the group name doesn't already exist for( asUINT n = 0; n < configGroups.GetLength(); n++ ) { if( configGroups[n]->groupName == groupName ) return asNAME_TAKEN; } if( currentGroup != &defaultGroup ) return asNOT_SUPPORTED; asCConfigGroup *group = asNEW(asCConfigGroup)(); if( group == 0 ) return asOUT_OF_MEMORY; group->groupName = groupName; configGroups.PushLast(group); currentGroup = group; return 0; } // interface int asCScriptEngine::EndConfigGroup() { // Raise error if trying to end the default config if( currentGroup == &defaultGroup ) return asERROR; currentGroup = &defaultGroup; return 0; } // interface int asCScriptEngine::RemoveConfigGroup(const char *groupName) { // It is not allowed to remove a group that is still in use. // It would be possible to change the code in such a way that // the group could be removed even though it was still in use, // but that would cause severe negative impact on runtime // performance, since the VM would then have to be able handle // situations where the types, functions, and global variables // can be removed at any time. for( asUINT n = 0; n < configGroups.GetLength(); n++ ) { if( configGroups[n]->groupName == groupName ) { asCConfigGroup *group = configGroups[n]; // Remove any unused generated template instances // before verifying if the config group is still in use. // RemoveTemplateInstanceType() checks if the instance is in use for( asUINT g = generatedTemplateTypes.GetLength(); g-- > 0; ) RemoveTemplateInstanceType(generatedTemplateTypes[g]); // Make sure the group isn't referenced by anyone if( group->refCount > 0 ) return asCONFIG_GROUP_IS_IN_USE; // Verify if any objects registered in this group is still alive if( group->HasLiveObjects() ) return asCONFIG_GROUP_IS_IN_USE; // Remove the group from the list if( n == configGroups.GetLength() - 1 ) configGroups.PopLast(); else configGroups[n] = configGroups.PopLast(); // Remove the configurations registered with this group group->RemoveConfiguration(this); asDELETE(group,asCConfigGroup); } } return 0; } asCConfigGroup *asCScriptEngine::FindConfigGroupForFunction(int funcId) const { for( asUINT n = 0; n < configGroups.GetLength(); n++ ) { // Check global functions asUINT m; for( m = 0; m < configGroups[n]->scriptFunctions.GetLength(); m++ ) { if( configGroups[n]->scriptFunctions[m]->id == funcId ) return configGroups[n]; } } return 0; } asCConfigGroup *asCScriptEngine::FindConfigGroupForGlobalVar(int gvarId) const { for( asUINT n = 0; n < configGroups.GetLength(); n++ ) { for( asUINT m = 0; m < configGroups[n]->globalProps.GetLength(); m++ ) { if( int(configGroups[n]->globalProps[m]->id) == gvarId ) return configGroups[n]; } } return 0; } asCConfigGroup *asCScriptEngine::FindConfigGroupForTypeInfo(const asCTypeInfo *objType) const { for( asUINT n = 0; n < configGroups.GetLength(); n++ ) { for( asUINT m = 0; m < configGroups[n]->types.GetLength(); m++ ) { if( configGroups[n]->types[m] == objType ) return configGroups[n]; } } return 0; } asCConfigGroup *asCScriptEngine::FindConfigGroupForFuncDef(const asCFuncdefType *funcDef) const { for( asUINT n = 0; n < configGroups.GetLength(); n++ ) { asCFuncdefType *f = const_cast(funcDef); if( configGroups[n]->types.Exists(f) ) return configGroups[n]; } return 0; } // interface asDWORD asCScriptEngine::SetDefaultAccessMask(asDWORD defaultMask) { asDWORD old = defaultAccessMask; defaultAccessMask = defaultMask; return old; } int asCScriptEngine::GetNextScriptFunctionId() { // This function only returns the next function id that // should be used. It doesn't update the internal arrays. if( freeScriptFunctionIds.GetLength() ) return freeScriptFunctionIds[freeScriptFunctionIds.GetLength()-1]; return (int)scriptFunctions.GetLength(); } void asCScriptEngine::AddScriptFunction(asCScriptFunction *func) { // Update the internal arrays with the function id that is now used if( freeScriptFunctionIds.GetLength() && freeScriptFunctionIds[freeScriptFunctionIds.GetLength()-1] == func->id ) freeScriptFunctionIds.PopLast(); if( asUINT(func->id) == scriptFunctions.GetLength() ) scriptFunctions.PushLast(func); else { // The slot should be empty or already set with the function, which happens if an existing shared function is reused asASSERT( scriptFunctions[func->id] == 0 || scriptFunctions[func->id] == func ); scriptFunctions[func->id] = func; } } void asCScriptEngine::RemoveScriptFunction(asCScriptFunction *func) { if( func == 0 || func->id < 0 ) return; int id = func->id & ~FUNC_IMPORTED; if( func->funcType == asFUNC_IMPORTED ) { if( id >= (int)importedFunctions.GetLength() ) return; if( importedFunctions[id] ) { // Remove the function from the list of script functions if( id == (int)importedFunctions.GetLength() - 1 ) { importedFunctions.PopLast(); } else { importedFunctions[id] = 0; freeImportedFunctionIdxs.PushLast(id); } } } else { if( id >= (int)scriptFunctions.GetLength() ) return; asASSERT( func == scriptFunctions[id] ); if( scriptFunctions[id] ) { // Remove the function from the list of script functions if( id == (int)scriptFunctions.GetLength() - 1 ) { scriptFunctions.PopLast(); } else { scriptFunctions[id] = 0; freeScriptFunctionIds.PushLast(id); } // Is the function used as signature id? if( func->signatureId == id ) { // Remove the signature id signatureIds.RemoveValue(func); // Update all functions using the signature id int newSigId = 0; for( asUINT n = 0; n < scriptFunctions.GetLength(); n++ ) { if( scriptFunctions[n] && scriptFunctions[n]->signatureId == id ) { if( newSigId == 0 ) { newSigId = scriptFunctions[n]->id; signatureIds.PushLast(scriptFunctions[n]); } scriptFunctions[n]->signatureId = newSigId; } } } } } } // internal void asCScriptEngine::RemoveFuncdef(asCFuncdefType *funcdef) { funcDefs.RemoveValue(funcdef); } // interface int asCScriptEngine::RegisterFuncdef(const char *decl) { if( decl == 0 ) return ConfigError(asINVALID_ARG, "RegisterFuncdef", decl, 0); // Parse the function declaration asCScriptFunction *func = asNEW(asCScriptFunction)(this, 0, asFUNC_FUNCDEF); if( func == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterFuncdef", decl, 0); asCBuilder bld(this, 0); asCObjectType *parentClass = 0; int r = bld.ParseFunctionDeclaration(0, decl, func, false, 0, 0, defaultNamespace, 0, &parentClass); if( r < 0 ) { // Set as dummy function before deleting func->funcType = asFUNC_DUMMY; asDELETE(func,asCScriptFunction); return ConfigError(asINVALID_DECLARATION, "RegisterFuncdef", decl, 0); } // Check name conflicts r = bld.CheckNameConflict(func->name.AddressOf(), 0, 0, defaultNamespace, true, false); if( r < 0 ) { asDELETE(func,asCScriptFunction); return ConfigError(asNAME_TAKEN, "RegisterFuncdef", decl, 0); } func->id = GetNextScriptFunctionId(); AddScriptFunction(func); asCFuncdefType *fdt = asNEW(asCFuncdefType)(this, func); funcDefs.PushLast(fdt); // doesn't increase refcount registeredFuncDefs.PushLast(fdt); // doesn't increase refcount allRegisteredTypes.Insert(asSNameSpaceNamePair(fdt->nameSpace, fdt->name), fdt); // constructor already set the ref count to 1 currentGroup->types.PushLast(fdt); if (parentClass) { parentClass->childFuncDefs.PushLast(fdt); fdt->parentClass = parentClass; // Check if the method restricts that use of the template to value types or reference types if (parentClass->flags & asOBJ_TEMPLATE) { r = SetTemplateRestrictions(parentClass, func, "RegisterFuncdef", decl); if (r < 0) return r; } } // If parameter type from other groups are used, add references currentGroup->AddReferencesForFunc(this, func); // Return the type id as success return GetTypeIdFromDataType(asCDataType::CreateType(fdt, false)); } // interface asUINT asCScriptEngine::GetFuncdefCount() const { return asUINT(registeredFuncDefs.GetLength()); } // interface asITypeInfo *asCScriptEngine::GetFuncdefByIndex(asUINT index) const { if( index >= registeredFuncDefs.GetLength() ) return 0; return registeredFuncDefs[index]; } // internal asCFuncdefType *asCScriptEngine::FindMatchingFuncdef(asCScriptFunction *func, asCModule *module) { asCFuncdefType *funcDef = func->funcdefType; if (funcDef == 0) { // Check if there is any matching funcdefs already in the engine that can be reused for (asUINT n = 0; n < funcDefs.GetLength(); n++) { if (funcDefs[n]->funcdef->IsSignatureExceptNameEqual(func)) { if (func->IsShared() && !funcDefs[n]->funcdef->IsShared()) continue; funcDef = funcDefs[n]; break; } } } if (funcDef == 0) { // Create a matching funcdef asCScriptFunction *fd = asNEW(asCScriptFunction)(this, 0, asFUNC_FUNCDEF); fd->name = func->name; fd->nameSpace = func->nameSpace; fd->SetShared(func->IsShared()); fd->returnType = func->returnType; fd->parameterTypes = func->parameterTypes; fd->inOutFlags = func->inOutFlags; funcDef = asNEW(asCFuncdefType)(this, fd); funcDefs.PushLast(funcDef); // doesn't increase the refCount fd->id = GetNextScriptFunctionId(); AddScriptFunction(fd); if (module) { // Add the new funcdef to the module so it will // be available when saving the bytecode funcDef->module = module; module->funcDefs.PushLast(funcDef); // the refCount was already accounted for in the constructor } // Observe, if the funcdef is created without informing a module a reference will be stored in the // engine's funcDefs array, but it will not be owned by any module. This means that it will live on // until the engine is released. } if (funcDef && module && funcDef->module && funcDef->module != module) { // Unless this is a registered funcDef the returned funcDef must // be stored as part of the module for saving/loading bytecode if (!module->funcDefs.Exists(funcDef)) { module->funcDefs.PushLast(funcDef); funcDef->AddRefInternal(); } else { asASSERT(funcDef->IsShared()); } } return funcDef; } // interface // TODO: typedef: Accept complex types for the typedefs int asCScriptEngine::RegisterTypedef(const char *type, const char *decl) { if( type == 0 ) return ConfigError(asINVALID_NAME, "RegisterTypedef", type, decl); // Verify if the name has been registered as a type already // TODO: Must check against registered funcdefs too if( GetRegisteredType(type, defaultNamespace) ) // Let the application recover from this error, for example if the same typedef is registered twice return asALREADY_REGISTERED; // Grab the data type size_t tokenLen; eTokenType token; asCDataType dataType; // Create the data type token = tok.GetToken(decl, strlen(decl), &tokenLen); switch(token) { case ttBool: case ttInt: case ttInt8: case ttInt16: case ttInt64: case ttUInt: case ttUInt8: case ttUInt16: case ttUInt64: case ttFloat: case ttDouble: if( strlen(decl) != tokenLen ) { return ConfigError(asINVALID_TYPE, "RegisterTypedef", type, decl); } break; default: return ConfigError(asINVALID_TYPE, "RegisterTypedef", type, decl); } dataType = asCDataType::CreatePrimitive(token, false); // Make sure the name is not a reserved keyword token = tok.GetToken(type, strlen(type), &tokenLen); if( token != ttIdentifier || strlen(type) != tokenLen ) return ConfigError(asINVALID_NAME, "RegisterTypedef", type, decl); asCBuilder bld(this, 0); int r = bld.CheckNameConflict(type, 0, 0, defaultNamespace, true, false); if( r < 0 ) return ConfigError(asNAME_TAKEN, "RegisterTypedef", type, decl); // Don't have to check against members of object // types as they are allowed to use the names // Put the data type in the list asCTypedefType *td = asNEW(asCTypedefType)(this); if( td == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterTypedef", type, decl); td->flags = asOBJ_TYPEDEF; td->size = dataType.GetSizeInMemoryBytes(); td->name = type; td->nameSpace = defaultNamespace; td->aliasForType = dataType; allRegisteredTypes.Insert(asSNameSpaceNamePair(td->nameSpace, td->name), td); registeredTypeDefs.PushLast(td); currentGroup->types.PushLast(td); return GetTypeIdByDecl(type); } // interface asUINT asCScriptEngine::GetTypedefCount() const { return asUINT(registeredTypeDefs.GetLength()); } // interface asITypeInfo *asCScriptEngine::GetTypedefByIndex(asUINT index) const { if( index >= registeredTypeDefs.GetLength() ) return 0; return registeredTypeDefs[index]; } // interface int asCScriptEngine::RegisterEnum(const char *name) { // Check the name if( NULL == name ) return ConfigError(asINVALID_NAME, "RegisterEnum", name, 0); // Verify if the name has been registered as a type already if( GetRegisteredType(name, defaultNamespace) ) return asALREADY_REGISTERED; // Use builder to parse the datatype asCDataType dt; asCBuilder bld(this, 0); bool oldMsgCallback = msgCallback; msgCallback = false; int r = bld.ParseDataType(name, &dt, defaultNamespace); msgCallback = oldMsgCallback; if( r >= 0 ) { // If it is not in the defaultNamespace then the type was successfully parsed because // it is declared in a parent namespace which shouldn't be treated as an error if( dt.GetTypeInfo() && dt.GetTypeInfo()->nameSpace == defaultNamespace ) return ConfigError(asERROR, "RegisterEnum", name, 0); } // Make sure the name is not a reserved keyword size_t tokenLen; int token = tok.GetToken(name, strlen(name), &tokenLen); if( token != ttIdentifier || strlen(name) != tokenLen ) return ConfigError(asINVALID_NAME, "RegisterEnum", name, 0); r = bld.CheckNameConflict(name, 0, 0, defaultNamespace, true, false); if( r < 0 ) return ConfigError(asNAME_TAKEN, "RegisterEnum", name, 0); asCEnumType *st = asNEW(asCEnumType)(this); if( st == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterEnum", name, 0); asCDataType dataType; dataType.CreatePrimitive(ttInt, false); st->flags = asOBJ_ENUM | asOBJ_SHARED; st->size = 4; st->name = name; st->nameSpace = defaultNamespace; allRegisteredTypes.Insert(asSNameSpaceNamePair(st->nameSpace, st->name), st); registeredEnums.PushLast(st); currentGroup->types.PushLast(st); return GetTypeIdByDecl(name); } // interface int asCScriptEngine::RegisterEnumValue(const char *typeName, const char *valueName, int value) { // Verify that the correct config group is used if( currentGroup->FindType(typeName) == 0 ) return ConfigError(asWRONG_CONFIG_GROUP, "RegisterEnumValue", typeName, valueName); asCDataType dt; int r; asCBuilder bld(this, 0); r = bld.ParseDataType(typeName, &dt, defaultNamespace); if( r < 0 ) return ConfigError(r, "RegisterEnumValue", typeName, valueName); // Store the enum value asCEnumType *ot = CastToEnumType(dt.GetTypeInfo()); if( ot == 0 ) return ConfigError(asINVALID_TYPE, "RegisterEnumValue", typeName, valueName); if( NULL == valueName ) return ConfigError(asINVALID_NAME, "RegisterEnumValue", typeName, valueName); asUINT tokenLen = 0; asETokenClass tokenClass = ParseToken(valueName, 0, &tokenLen); if( tokenClass != asTC_IDENTIFIER || tokenLen != strlen(valueName) ) return ConfigError(asINVALID_NAME, "RegisterEnumValue", typeName, valueName); for( unsigned int n = 0; n < ot->enumValues.GetLength(); n++ ) { if( ot->enumValues[n]->name == valueName ) return ConfigError(asALREADY_REGISTERED, "RegisterEnumValue", typeName, valueName); } asSEnumValue *e = asNEW(asSEnumValue); if( e == 0 ) return ConfigError(asOUT_OF_MEMORY, "RegisterEnumValue", typeName, valueName); e->name = valueName; e->value = value; ot->enumValues.PushLast(e); return asSUCCESS; } // interface asUINT asCScriptEngine::GetEnumCount() const { return registeredEnums.GetLength(); } // interface asITypeInfo *asCScriptEngine::GetEnumByIndex(asUINT index) const { if( index >= registeredEnums.GetLength() ) return 0; return registeredEnums[index]; } // interface asUINT asCScriptEngine::GetObjectTypeCount() const { return asUINT(registeredObjTypes.GetLength()); } // interface asITypeInfo *asCScriptEngine::GetObjectTypeByIndex(asUINT index) const { if( index >= registeredObjTypes.GetLength() ) return 0; return registeredObjTypes[index]; } // interface asITypeInfo *asCScriptEngine::GetTypeInfoByName(const char *name) const { asSNameSpace *ns = defaultNamespace; while (ns) { // Check the object types for (asUINT n = 0; n < registeredObjTypes.GetLength(); n++) { if (registeredObjTypes[n]->name == name && registeredObjTypes[n]->nameSpace == ns) return registeredObjTypes[n]; } // Perhaps it is a template type? In this case // the returned type will be the generic type for (asUINT n = 0; n < registeredTemplateTypes.GetLength(); n++) { if (registeredTemplateTypes[n]->name == name && registeredTemplateTypes[n]->nameSpace == ns) return registeredTemplateTypes[n]; } // Check the enum types for (asUINT n = 0; n < registeredEnums.GetLength(); n++) { if (registeredEnums[n]->name == name && registeredEnums[n]->nameSpace == ns) return registeredEnums[n]; } // Check the typedefs for (asUINT n = 0; n < registeredTypeDefs.GetLength();n++) { if (registeredTypeDefs[n]->name == name && registeredTypeDefs[n]->nameSpace == ns) return registeredTypeDefs[n]; } // Recursively search parent namespace ns = GetParentNameSpace(ns); } return 0; } // interface asITypeInfo *asCScriptEngine::GetTypeInfoById(int typeId) const { asCDataType dt = GetDataTypeFromTypeId(typeId); // Is the type id valid? if (!dt.IsValid()) return 0; return dt.GetTypeInfo(); } // interface asIScriptFunction *asCScriptEngine::GetFunctionById(int funcId) const { return GetScriptFunction(funcId); } // internal bool asCScriptEngine::IsTemplateType(const char *name) const { // Only look in the list of template types (not instance types) for( unsigned int n = 0; n < registeredTemplateTypes.GetLength(); n++ ) { asCObjectType *type = registeredTemplateTypes[n]; if( type && type->name == name ) return true; } return false; } // internal int asCScriptEngine::GetScriptSectionNameIndex(const char *name) { ACQUIREEXCLUSIVE(engineRWLock); // TODO: These names are only released when the engine is freed. The assumption is that // the same script section names will be reused instead of there always being new // names. Is this assumption valid? Do we need to add reference counting? // Store the script section names for future reference for( asUINT n = 0; n < scriptSectionNames.GetLength(); n++ ) { if( scriptSectionNames[n]->Compare(name) == 0 ) { RELEASEEXCLUSIVE(engineRWLock); return n; } } asCString *str = asNEW(asCString)(name); if( str ) scriptSectionNames.PushLast(str); int r = int(scriptSectionNames.GetLength()-1); RELEASEEXCLUSIVE(engineRWLock); return r; } // interface void asCScriptEngine::SetEngineUserDataCleanupCallback(asCLEANENGINEFUNC_t callback, asPWORD type) { ACQUIREEXCLUSIVE(engineRWLock); for( asUINT n = 0; n < cleanEngineFuncs.GetLength(); n++ ) { if( cleanEngineFuncs[n].type == type ) { cleanEngineFuncs[n].cleanFunc = callback; RELEASEEXCLUSIVE(engineRWLock); return; } } SEngineClean otc = {type, callback}; cleanEngineFuncs.PushLast(otc); RELEASEEXCLUSIVE(engineRWLock); } // interface void asCScriptEngine::SetModuleUserDataCleanupCallback(asCLEANMODULEFUNC_t callback, asPWORD type) { ACQUIREEXCLUSIVE(engineRWLock); for( asUINT n = 0; n < cleanModuleFuncs.GetLength(); n++ ) { if( cleanModuleFuncs[n].type == type ) { cleanModuleFuncs[n].cleanFunc = callback; RELEASEEXCLUSIVE(engineRWLock); return; } } SModuleClean otc = {type, callback}; cleanModuleFuncs.PushLast(otc); RELEASEEXCLUSIVE(engineRWLock); } // interface void asCScriptEngine::SetContextUserDataCleanupCallback(asCLEANCONTEXTFUNC_t callback, asPWORD type) { ACQUIREEXCLUSIVE(engineRWLock); for( asUINT n = 0; n < cleanContextFuncs.GetLength(); n++ ) { if( cleanContextFuncs[n].type == type ) { cleanContextFuncs[n].cleanFunc = callback; RELEASEEXCLUSIVE(engineRWLock); return; } } SContextClean otc = {type, callback}; cleanContextFuncs.PushLast(otc); RELEASEEXCLUSIVE(engineRWLock); } // interface void asCScriptEngine::SetFunctionUserDataCleanupCallback(asCLEANFUNCTIONFUNC_t callback, asPWORD type) { ACQUIREEXCLUSIVE(engineRWLock); for( asUINT n = 0; n < cleanFunctionFuncs.GetLength(); n++ ) { if( cleanFunctionFuncs[n].type == type ) { cleanFunctionFuncs[n].cleanFunc = callback; RELEASEEXCLUSIVE(engineRWLock); return; } } SFunctionClean otc = {type, callback}; cleanFunctionFuncs.PushLast(otc); RELEASEEXCLUSIVE(engineRWLock); } // interface void asCScriptEngine::SetTypeInfoUserDataCleanupCallback(asCLEANTYPEINFOFUNC_t callback, asPWORD type) { ACQUIREEXCLUSIVE(engineRWLock); for( asUINT n = 0; n < cleanTypeInfoFuncs.GetLength(); n++ ) { if( cleanTypeInfoFuncs[n].type == type ) { cleanTypeInfoFuncs[n].cleanFunc = callback; RELEASEEXCLUSIVE(engineRWLock); return; } } STypeInfoClean otc = {type, callback}; cleanTypeInfoFuncs.PushLast(otc); RELEASEEXCLUSIVE(engineRWLock); } // interface void asCScriptEngine::SetScriptObjectUserDataCleanupCallback(asCLEANSCRIPTOBJECTFUNC_t callback, asPWORD type) { ACQUIREEXCLUSIVE(engineRWLock); for( asUINT n = 0; n < cleanScriptObjectFuncs.GetLength(); n++ ) { if( cleanScriptObjectFuncs[n].type == type ) { cleanScriptObjectFuncs[n].cleanFunc = callback; RELEASEEXCLUSIVE(engineRWLock); return; } } SScriptObjClean soc = {type, callback}; cleanScriptObjectFuncs.PushLast(soc); RELEASEEXCLUSIVE(engineRWLock); } // interface int asCScriptEngine::SetTranslateAppExceptionCallback(asSFuncPtr callback, void *param, int callConv) { #ifdef AS_NO_EXCEPTIONS return asNOT_SUPPORTED; #else if (callback.ptr.f.func == 0) { // Clear the callback translateExceptionCallback = false; return asSUCCESS; } // Detect the new callback translateExceptionCallback = true; translateExceptionCallbackObj = param; bool isObj = false; if ((unsigned)callConv == asCALL_GENERIC || (unsigned)callConv == asCALL_THISCALL_OBJFIRST || (unsigned)callConv == asCALL_THISCALL_OBJLAST) return asNOT_SUPPORTED; if ((unsigned)callConv >= asCALL_THISCALL) { isObj = true; if (param == 0) { translateExceptionCallback = false; return asINVALID_ARG; } } int r = DetectCallingConvention(isObj, callback, callConv, 0, &translateExceptionCallbackFunc); if (r < 0) translateExceptionCallback = false; return r; #endif } // internal asCObjectType *asCScriptEngine::GetListPatternType(int listPatternFuncId) { // Get the object type either from the constructor's object for value types // or from the factory's return type for reference types asCObjectType *ot = scriptFunctions[listPatternFuncId]->objectType; if( ot == 0 ) ot = CastToObjectType(scriptFunctions[listPatternFuncId]->returnType.GetTypeInfo()); asASSERT( ot ); // Check if this object type already has a list pattern type for( asUINT n = 0; n < listPatternTypes.GetLength(); n++ ) { if( listPatternTypes[n]->templateSubTypes[0].GetTypeInfo() == ot ) return listPatternTypes[n]; } // Create a new list pattern type for the given object type asCObjectType *lpt = asNEW(asCObjectType)(this); lpt->templateSubTypes.PushLast(asCDataType::CreateType(ot, false)); lpt->flags = asOBJ_LIST_PATTERN; listPatternTypes.PushLast(lpt); return lpt; } // internal void asCScriptEngine::DestroyList(asBYTE *buffer, const asCObjectType *listPatternType) { asASSERT( listPatternType && (listPatternType->flags & asOBJ_LIST_PATTERN) ); // Get the list pattern from the listFactory function // TODO: runtime optimize: Store the used list factory in the listPatternType itself // TODO: runtime optimize: Keep a flag to indicate if there is really a need to free anything asCObjectType *ot = CastToObjectType(listPatternType->templateSubTypes[0].GetTypeInfo()); asCScriptFunction *listFactory = scriptFunctions[ot->beh.listFactory]; asASSERT( listFactory ); asSListPatternNode *node = listFactory->listPattern; DestroySubList(buffer, node); asASSERT( node->type == asLPT_END ); } // internal void asCScriptEngine::DestroySubList(asBYTE *&buffer, asSListPatternNode *&node) { asASSERT( node->type == asLPT_START ); int count = 0; node = node->next; while( node ) { if( node->type == asLPT_REPEAT || node->type == asLPT_REPEAT_SAME ) { // Align the offset to 4 bytes boundary if( (asPWORD(buffer) & 0x3) ) buffer += 4 - (asPWORD(buffer) & 0x3); // Determine how many times the pattern repeat count = *(asUINT*)buffer; buffer += 4; if( count == 0 ) { // Skip the sub pattern that was expected to be repeated, otherwise // we'll try to delete things that don't exist in the buffer node = node->next; if( node->type == asLPT_START ) { int subCount = 1; do { node = node->next; if( node->type == asLPT_START ) subCount++; else if( node->type == asLPT_END ) subCount--; } while( subCount > 0 ); return; } } } else if( node->type == asLPT_TYPE ) { // If we're not in a repeat iteration, then only 1 value should be destroyed if( count <= 0 ) count = 1; asCDataType dt = reinterpret_cast(node)->dataType; bool isVarType = dt.GetTokenType() == ttQuestion; while( count-- ) { if( isVarType ) { // Align the offset to 4 bytes boundary if( (asPWORD(buffer) & 0x3) ) buffer += 4 - (asPWORD(buffer) & 0x3); int typeId = *(int*)buffer; buffer += 4; dt = GetDataTypeFromTypeId(typeId); } asCTypeInfo *ti = dt.GetTypeInfo(); if( ti && (ti->flags & asOBJ_ENUM) == 0 ) { // Free all instances of this type if( ti->flags & asOBJ_VALUE ) { asUINT size = ti->GetSize(); // Align the offset to 4 bytes boundary if( size >= 4 && (asPWORD(buffer) & 0x3) ) buffer += 4 - (asPWORD(buffer) & 0x3); asCObjectType *ot = CastToObjectType(ti); if( ot && ot->beh.destruct ) { // Only call the destructor if the object has been created // We'll assume the object has been created if any byte in // the memory is different from 0. // TODO: This is not really correct, as bytes may have been // modified by the constructor, but then an exception // thrown aborting the initialization. The engine // really should be keeping track of which objects has // been successfully initialized. for( asUINT n = 0; n < size; n++ ) { if( buffer[n] != 0 ) { void *ptr = (void*)buffer; CallObjectMethod(ptr, ot->beh.destruct); break; } } } // Advance the pointer in the buffer buffer += size; } else { // Align the offset to 4 bytes boundary if( asPWORD(buffer) & 0x3 ) buffer += 4 - (asPWORD(buffer) & 0x3); // Call the release behaviour void *ptr = *(void**)buffer; if( ptr ) ReleaseScriptObject(ptr, ti); buffer += AS_PTR_SIZE*4; } } else { asUINT size = dt.GetSizeInMemoryBytes(); // Align the offset to 4 bytes boundary if( size >= 4 && (asPWORD(buffer) & 0x3) ) buffer += 4 - (asPWORD(buffer) & 0x3); // Advance the buffer buffer += size; } } } else if( node->type == asLPT_START ) { // If we're not in a repeat iteration, then only 1 value should be destroyed if( count <= 0 ) count = 1; while( count-- ) { asSListPatternNode *subList = node; DestroySubList(buffer, subList); asASSERT( subList->type == asLPT_END ); if( count == 0 ) node = subList; } } else if( node->type == asLPT_END ) { return; } else { asASSERT( false ); } node = node->next; } } // internal asSNameSpace *asCScriptEngine::GetParentNameSpace(asSNameSpace *ns) const { if( ns == 0 ) return 0; if( ns == nameSpaces[0] ) return 0; asCString scope = ns->name; int pos = scope.FindLast("::"); if( pos >= 0 ) { scope = scope.SubString(0, pos); return FindNameSpace(scope.AddressOf()); } return nameSpaces[0]; } END_AS_NAMESPACE