/* AngelCode Scripting Library Copyright (c) 2003-2015 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ #ifndef AS_ARRAY_H #define AS_ARRAY_H #if !defined(AS_NO_MEMORY_H) #include #endif #include // some compilers declare memcpy() here #ifdef _MSC_VER #pragma warning(disable:4345) // warning about a change in how the code is handled in this version #endif BEGIN_AS_NAMESPACE template class asCArray { public: asCArray(); asCArray(const asCArray &); asCArray(asUINT reserve); ~asCArray(); void Allocate(asUINT numElements, bool keepData); void AllocateNoConstruct(asUINT numElements, bool keepData); asUINT GetCapacity() const; void PushLast(const T &element); T PopLast(); bool SetLength(asUINT numElements); bool SetLengthNoConstruct(asUINT numElements); asUINT GetLength() const; void Copy(const T*, asUINT count); asCArray &operator =(const asCArray &); void SwapWith(asCArray &other); const T &operator [](asUINT index) const; T &operator [](asUINT index); T *AddressOf(); const T *AddressOf() const; bool Concatenate(const asCArray &); void Concatenate(T*, unsigned int count); bool Exists(const T &element) const; int IndexOf(const T &element) const; void RemoveIndex(asUINT index); // Removes the entry without reordering the array void RemoveValue(const T &element); // Removes the value without reordering the array void RemoveIndexUnordered(asUINT index); // Removes the entry without keeping the order bool operator==(const asCArray &) const; bool operator!=(const asCArray &) const; protected: T *array; asUINT length; // 32bits is enough for all uses of this array asUINT maxLength; char buf[2*4*AS_PTR_SIZE]; // Avoid dynamically allocated memory for tiny arrays }; // Implementation template T *asCArray::AddressOf() { return array; } template const T *asCArray::AddressOf() const { return array; } template asCArray::asCArray(void) { array = 0; length = 0; maxLength = 0; } template asCArray::asCArray(const asCArray ©) { array = 0; length = 0; maxLength = 0; *this = copy; } template asCArray::asCArray(asUINT reserve) { array = 0; length = 0; maxLength = 0; Allocate(reserve, false); } template asCArray::~asCArray(void) { // Allocating a zero length array will free all memory Allocate(0,0); } template asUINT asCArray::GetLength() const { return length; } template const T &asCArray::operator [](asUINT index) const { asASSERT(index < length); return array[index]; } template T &asCArray::operator [](asUINT index) { asASSERT(index < length); return array[index]; } template void asCArray::PushLast(const T &element) { if( length == maxLength ) { if( maxLength == 0 ) Allocate(1, false); else Allocate(2*maxLength, true); if( length == maxLength ) { // Out of memory. Return without doing anything return; } } array[length++] = element; } template T asCArray::PopLast() { asASSERT(length > 0); return array[--length]; } template void asCArray::Allocate(asUINT numElements, bool keepData) { // We have 4 situations // 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller // 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes // 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller // 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes T *tmp = 0; if( numElements ) { if( sizeof(T)*numElements <= sizeof(buf) ) // Use the internal buffer tmp = reinterpret_cast(buf); else { // Allocate the array and construct each of the elements tmp = asNEWARRAY(T,numElements); if( tmp == 0 ) { // Out of memory. Return without doing anything return; } } if( array == tmp ) { // Construct only the newly allocated elements for( asUINT n = length; n < numElements; n++ ) new (&tmp[n]) T(); } else { // Construct all elements for( asUINT n = 0; n < numElements; n++ ) new (&tmp[n]) T(); } } if( array ) { asUINT oldLength = length; if( array == tmp ) { if( keepData ) { if( length > numElements ) length = numElements; } else length = 0; // Call the destructor for elements that are no longer used for( asUINT n = length; n < oldLength; n++ ) array[n].~T(); } else { if( keepData ) { if( length > numElements ) length = numElements; for( asUINT n = 0; n < length; n++ ) tmp[n] = array[n]; } else length = 0; // Call the destructor for all elements for( asUINT n = 0; n < oldLength; n++ ) array[n].~T(); if( array != reinterpret_cast(buf) ) asDELETEARRAY(array); } } array = tmp; maxLength = numElements; } template void asCArray::AllocateNoConstruct(asUINT numElements, bool keepData) { // We have 4 situations // 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller // 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes // 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller // 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes T *tmp = 0; if( numElements ) { if( sizeof(T)*numElements <= sizeof(buf) ) // Use the internal buffer tmp = reinterpret_cast(buf); else { // Allocate the array and construct each of the elements tmp = asNEWARRAY(T,numElements); if( tmp == 0 ) { // Out of memory. Return without doing anything return; } } } if( array ) { if( array == tmp ) { if( keepData ) { if( length > numElements ) length = numElements; } else length = 0; } else { if( keepData ) { if( length > numElements ) length = numElements; memcpy(tmp, array, sizeof(T)*length); } else length = 0; if( array != reinterpret_cast(buf) ) asDELETEARRAY(array); } } array = tmp; maxLength = numElements; } template asUINT asCArray::GetCapacity() const { return maxLength; } template bool asCArray::SetLength(asUINT numElements) { if( numElements > maxLength ) { Allocate(numElements, true); if( numElements > maxLength ) { // Out of memory. Return without doing anything return false; } } length = numElements; return true; } template bool asCArray::SetLengthNoConstruct(asUINT numElements) { if( numElements > maxLength ) { AllocateNoConstruct(numElements, true); if( numElements > maxLength ) { // Out of memory. Return without doing anything return false; } } length = numElements; return true; } template void asCArray::Copy(const T *data, asUINT count) { if( maxLength < count ) { Allocate(count, false); if( maxLength < count ) { // Out of memory. Return without doing anything return; } } for( asUINT n = 0; n < count; n++ ) array[n] = data[n]; length = count; } template asCArray &asCArray::operator =(const asCArray ©) { Copy(copy.array, copy.length); return *this; } template void asCArray::SwapWith(asCArray &other) { T *tmpArray = array; asUINT tmpLength = length; asUINT tmpMaxLength = maxLength; char tmpBuf[sizeof(buf)]; memcpy(tmpBuf, buf, sizeof(buf)); array = other.array; length = other.length; maxLength = other.maxLength; memcpy(buf, other.buf, sizeof(buf)); other.array = tmpArray; other.length = tmpLength; other.maxLength = tmpMaxLength; memcpy(other.buf, tmpBuf, sizeof(buf)); // If the data is in the internal buffer, then the array pointer must refer to it if( array == reinterpret_cast(other.buf) ) array = reinterpret_cast(buf); if( other.array == reinterpret_cast(buf) ) other.array = reinterpret_cast(other.buf); } template bool asCArray::operator ==(const asCArray &other) const { if( length != other.length ) return false; for( asUINT n = 0; n < length; n++ ) if( array[n] != other.array[n] ) return false; return true; } template bool asCArray::operator !=(const asCArray &other) const { return !(*this == other); } // Returns false if the concatenation wasn't successful due to out of memory template bool asCArray::Concatenate(const asCArray &other) { if( maxLength < length + other.length ) { Allocate(length + other.length, true); if( maxLength < length + other.length ) { // Out of memory return false; } } for( asUINT n = 0; n < other.length; n++ ) array[length+n] = other.array[n]; length += other.length; // Success return true; } template void asCArray::Concatenate(T* other, unsigned int count) { for( unsigned int c = 0; c < count; c++ ) PushLast(other[c]); } template bool asCArray::Exists(const T &e) const { return IndexOf(e) == -1 ? false : true; } template int asCArray::IndexOf(const T &e) const { for( asUINT n = 0; n < length; n++ ) if( array[n] == e ) return static_cast(n); return -1; } template void asCArray::RemoveIndex(asUINT index) { if( index < length ) { for( asUINT n = index; n < length-1; n++ ) array[n] = array[n+1]; PopLast(); } } template void asCArray::RemoveValue(const T &e) { for( asUINT n = 0; n < length; n++ ) { if( array[n] == e ) { RemoveIndex(n); break; } } } template void asCArray::RemoveIndexUnordered(asUINT index) { if( index == length - 1 ) PopLast(); else if( index < length ) array[index] = PopLast(); } END_AS_NAMESPACE #endif