// // detail/impl/kqueue_reactor.ipp // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2021 Christopher M. Kohlhoff (chris at kohlhoff dot com) // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP #define ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include "asio/detail/config.hpp" #if defined(ASIO_HAS_KQUEUE) #include "asio/detail/kqueue_reactor.hpp" #include "asio/detail/scheduler.hpp" #include "asio/detail/throw_error.hpp" #include "asio/error.hpp" #if defined(__NetBSD__) # include #endif #include "asio/detail/push_options.hpp" #if defined(__NetBSD__) && __NetBSD_Version__ < 999001500 # define ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \ EV_SET(ev, ident, filt, flags, fflags, data, \ reinterpret_cast(static_cast(udata))) #else # define ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \ EV_SET(ev, ident, filt, flags, fflags, data, udata) #endif namespace asio { namespace detail { kqueue_reactor::kqueue_reactor(asio::execution_context& ctx) : execution_context_service_base(ctx), scheduler_(use_service(ctx)), mutex_(ASIO_CONCURRENCY_HINT_IS_LOCKING( REACTOR_REGISTRATION, scheduler_.concurrency_hint())), kqueue_fd_(do_kqueue_create()), interrupter_(), shutdown_(false), registered_descriptors_mutex_(mutex_.enabled()) { struct kevent events[1]; ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(), EVFILT_READ, EV_ADD, 0, 0, &interrupter_); if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1) { asio::error_code error(errno, asio::error::get_system_category()); asio::detail::throw_error(error); } } kqueue_reactor::~kqueue_reactor() { close(kqueue_fd_); } void kqueue_reactor::shutdown() { mutex::scoped_lock lock(mutex_); shutdown_ = true; lock.unlock(); op_queue ops; while (descriptor_state* state = registered_descriptors_.first()) { for (int i = 0; i < max_ops; ++i) ops.push(state->op_queue_[i]); state->shutdown_ = true; registered_descriptors_.free(state); } timer_queues_.get_all_timers(ops); scheduler_.abandon_operations(ops); } void kqueue_reactor::notify_fork( asio::execution_context::fork_event fork_ev) { if (fork_ev == asio::execution_context::fork_child) { // The kqueue descriptor is automatically closed in the child. kqueue_fd_ = -1; kqueue_fd_ = do_kqueue_create(); interrupter_.recreate(); struct kevent events[2]; ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(), EVFILT_READ, EV_ADD, 0, 0, &interrupter_); if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1) { asio::error_code ec(errno, asio::error::get_system_category()); asio::detail::throw_error(ec, "kqueue interrupter registration"); } // Re-register all descriptors with kqueue. mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); for (descriptor_state* state = registered_descriptors_.first(); state != 0; state = state->next_) { if (state->num_kevents_ > 0) { ASIO_KQUEUE_EV_SET(&events[0], state->descriptor_, EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, state); ASIO_KQUEUE_EV_SET(&events[1], state->descriptor_, EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, state); if (::kevent(kqueue_fd_, events, state->num_kevents_, 0, 0, 0) == -1) { asio::error_code ec(errno, asio::error::get_system_category()); asio::detail::throw_error(ec, "kqueue re-registration"); } } } } } void kqueue_reactor::init_task() { scheduler_.init_task(); } int kqueue_reactor::register_descriptor(socket_type descriptor, kqueue_reactor::per_descriptor_data& descriptor_data) { descriptor_data = allocate_descriptor_state(); ASIO_HANDLER_REACTOR_REGISTRATION(( context(), static_cast(descriptor), reinterpret_cast(descriptor_data))); mutex::scoped_lock lock(descriptor_data->mutex_); descriptor_data->descriptor_ = descriptor; descriptor_data->num_kevents_ = 0; descriptor_data->shutdown_ = false; return 0; } int kqueue_reactor::register_internal_descriptor( int op_type, socket_type descriptor, kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op) { descriptor_data = allocate_descriptor_state(); ASIO_HANDLER_REACTOR_REGISTRATION(( context(), static_cast(descriptor), reinterpret_cast(descriptor_data))); mutex::scoped_lock lock(descriptor_data->mutex_); descriptor_data->descriptor_ = descriptor; descriptor_data->num_kevents_ = 1; descriptor_data->shutdown_ = false; descriptor_data->op_queue_[op_type].push(op); struct kevent events[1]; ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, descriptor_data); if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1) return errno; return 0; } void kqueue_reactor::move_descriptor(socket_type, kqueue_reactor::per_descriptor_data& target_descriptor_data, kqueue_reactor::per_descriptor_data& source_descriptor_data) { target_descriptor_data = source_descriptor_data; source_descriptor_data = 0; } void kqueue_reactor::start_op(int op_type, socket_type descriptor, kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op, bool is_continuation, bool allow_speculative) { if (!descriptor_data) { op->ec_ = asio::error::bad_descriptor; post_immediate_completion(op, is_continuation); return; } mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (descriptor_data->shutdown_) { post_immediate_completion(op, is_continuation); return; } if (descriptor_data->op_queue_[op_type].empty()) { static const int num_kevents[max_ops] = { 1, 2, 1 }; if (allow_speculative && (op_type != read_op || descriptor_data->op_queue_[except_op].empty())) { if (op->perform()) { descriptor_lock.unlock(); scheduler_.post_immediate_completion(op, is_continuation); return; } if (descriptor_data->num_kevents_ < num_kevents[op_type]) { struct kevent events[2]; ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, descriptor_data); ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, descriptor_data); if (::kevent(kqueue_fd_, events, num_kevents[op_type], 0, 0, 0) != -1) { descriptor_data->num_kevents_ = num_kevents[op_type]; } else { op->ec_ = asio::error_code(errno, asio::error::get_system_category()); scheduler_.post_immediate_completion(op, is_continuation); return; } } } else { if (descriptor_data->num_kevents_ < num_kevents[op_type]) descriptor_data->num_kevents_ = num_kevents[op_type]; struct kevent events[2]; ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, descriptor_data); ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, descriptor_data); ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0); } } descriptor_data->op_queue_[op_type].push(op); scheduler_.work_started(); } void kqueue_reactor::cancel_ops(socket_type, kqueue_reactor::per_descriptor_data& descriptor_data) { if (!descriptor_data) return; mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_lock.unlock(); scheduler_.post_deferred_completions(ops); } void kqueue_reactor::deregister_descriptor(socket_type descriptor, kqueue_reactor::per_descriptor_data& descriptor_data, bool closing) { if (!descriptor_data) return; mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (!descriptor_data->shutdown_) { if (closing) { // The descriptor will be automatically removed from the kqueue when it // is closed. } else { struct kevent events[2]; ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0); } op_queue ops; for (int i = 0; i < max_ops; ++i) { while (reactor_op* op = descriptor_data->op_queue_[i].front()) { op->ec_ = asio::error::operation_aborted; descriptor_data->op_queue_[i].pop(); ops.push(op); } } descriptor_data->descriptor_ = -1; descriptor_data->shutdown_ = true; descriptor_lock.unlock(); ASIO_HANDLER_REACTOR_DEREGISTRATION(( context(), static_cast(descriptor), reinterpret_cast(descriptor_data))); scheduler_.post_deferred_completions(ops); // Leave descriptor_data set so that it will be freed by the subsequent // call to cleanup_descriptor_data. } else { // We are shutting down, so prevent cleanup_descriptor_data from freeing // the descriptor_data object and let the destructor free it instead. descriptor_data = 0; } } void kqueue_reactor::deregister_internal_descriptor(socket_type descriptor, kqueue_reactor::per_descriptor_data& descriptor_data) { if (!descriptor_data) return; mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (!descriptor_data->shutdown_) { struct kevent events[2]; ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ, EV_DELETE, 0, 0, 0); ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE, EV_DELETE, 0, 0, 0); ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0); op_queue ops; for (int i = 0; i < max_ops; ++i) ops.push(descriptor_data->op_queue_[i]); descriptor_data->descriptor_ = -1; descriptor_data->shutdown_ = true; descriptor_lock.unlock(); ASIO_HANDLER_REACTOR_DEREGISTRATION(( context(), static_cast(descriptor), reinterpret_cast(descriptor_data))); // Leave descriptor_data set so that it will be freed by the subsequent // call to cleanup_descriptor_data. } else { // We are shutting down, so prevent cleanup_descriptor_data from freeing // the descriptor_data object and let the destructor free it instead. descriptor_data = 0; } } void kqueue_reactor::cleanup_descriptor_data( per_descriptor_data& descriptor_data) { if (descriptor_data) { free_descriptor_state(descriptor_data); descriptor_data = 0; } } void kqueue_reactor::run(long usec, op_queue& ops) { mutex::scoped_lock lock(mutex_); // Determine how long to block while waiting for events. timespec timeout_buf = { 0, 0 }; timespec* timeout = usec ? get_timeout(usec, timeout_buf) : &timeout_buf; lock.unlock(); // Block on the kqueue descriptor. struct kevent events[128]; int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout); #if defined(ASIO_ENABLE_HANDLER_TRACKING) // Trace the waiting events. for (int i = 0; i < num_events; ++i) { void* ptr = reinterpret_cast(events[i].udata); if (ptr != &interrupter_) { unsigned event_mask = 0; switch (events[i].filter) { case EVFILT_READ: event_mask |= ASIO_HANDLER_REACTOR_READ_EVENT; break; case EVFILT_WRITE: event_mask |= ASIO_HANDLER_REACTOR_WRITE_EVENT; break; } if ((events[i].flags & (EV_ERROR | EV_OOBAND)) != 0) event_mask |= ASIO_HANDLER_REACTOR_ERROR_EVENT; ASIO_HANDLER_REACTOR_EVENTS((context(), reinterpret_cast(ptr), event_mask)); } } #endif // defined(ASIO_ENABLE_HANDLER_TRACKING) // Dispatch the waiting events. for (int i = 0; i < num_events; ++i) { void* ptr = reinterpret_cast(events[i].udata); if (ptr == &interrupter_) { interrupter_.reset(); } else { descriptor_state* descriptor_data = static_cast(ptr); mutex::scoped_lock descriptor_lock(descriptor_data->mutex_); if (events[i].filter == EVFILT_WRITE && descriptor_data->num_kevents_ == 2 && descriptor_data->op_queue_[write_op].empty()) { // Some descriptor types, like serial ports, don't seem to support // EV_CLEAR with EVFILT_WRITE. Since we have no pending write // operations we'll remove the EVFILT_WRITE registration here so that // we don't end up in a tight spin. struct kevent delete_events[1]; ASIO_KQUEUE_EV_SET(&delete_events[0], descriptor_data->descriptor_, EVFILT_WRITE, EV_DELETE, 0, 0, 0); ::kevent(kqueue_fd_, delete_events, 1, 0, 0, 0); descriptor_data->num_kevents_ = 1; } // Exception operations must be processed first to ensure that any // out-of-band data is read before normal data. #if defined(__NetBSD__) static const unsigned int filter[max_ops] = #else static const int filter[max_ops] = #endif { EVFILT_READ, EVFILT_WRITE, EVFILT_READ }; for (int j = max_ops - 1; j >= 0; --j) { if (events[i].filter == filter[j]) { if (j != except_op || events[i].flags & EV_OOBAND) { while (reactor_op* op = descriptor_data->op_queue_[j].front()) { if (events[i].flags & EV_ERROR) { op->ec_ = asio::error_code( static_cast(events[i].data), asio::error::get_system_category()); descriptor_data->op_queue_[j].pop(); ops.push(op); } if (op->perform()) { descriptor_data->op_queue_[j].pop(); ops.push(op); } else break; } } } } } } lock.lock(); timer_queues_.get_ready_timers(ops); } void kqueue_reactor::interrupt() { interrupter_.interrupt(); } int kqueue_reactor::do_kqueue_create() { int fd = ::kqueue(); if (fd == -1) { asio::error_code ec(errno, asio::error::get_system_category()); asio::detail::throw_error(ec, "kqueue"); } return fd; } kqueue_reactor::descriptor_state* kqueue_reactor::allocate_descriptor_state() { mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); return registered_descriptors_.alloc(ASIO_CONCURRENCY_HINT_IS_LOCKING( REACTOR_IO, scheduler_.concurrency_hint())); } void kqueue_reactor::free_descriptor_state(kqueue_reactor::descriptor_state* s) { mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_); registered_descriptors_.free(s); } void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue) { mutex::scoped_lock lock(mutex_); timer_queues_.insert(&queue); } void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue) { mutex::scoped_lock lock(mutex_); timer_queues_.erase(&queue); } timespec* kqueue_reactor::get_timeout(long usec, timespec& ts) { // By default we will wait no longer than 5 minutes. This will ensure that // any changes to the system clock are detected after no longer than this. const long max_usec = 5 * 60 * 1000 * 1000; usec = timer_queues_.wait_duration_usec( (usec < 0 || max_usec < usec) ? max_usec : usec); ts.tv_sec = usec / 1000000; ts.tv_nsec = (usec % 1000000) * 1000; return &ts; } } // namespace detail } // namespace asio #undef ASIO_KQUEUE_EV_SET #include "asio/detail/pop_options.hpp" #endif // defined(ASIO_HAS_KQUEUE) #endif // ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP