Angelscript/angelscript/source/as_array.h

529 lines
11 KiB
C++

/*
AngelCode Scripting Library
Copyright (c) 2003-2015 Andreas Jonsson
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
The original version of this library can be located at:
http://www.angelcode.com/angelscript/
Andreas Jonsson
andreas@angelcode.com
*/
#ifndef AS_ARRAY_H
#define AS_ARRAY_H
#if !defined(AS_NO_MEMORY_H)
#include <memory.h>
#endif
#include <string.h> // some compilers declare memcpy() here
#ifdef _MSC_VER
#pragma warning(disable:4345) // warning about a change in how the code is handled in this version
#endif
BEGIN_AS_NAMESPACE
template <class T> class asCArray
{
public:
asCArray();
asCArray(const asCArray<T> &);
asCArray(asUINT reserve);
~asCArray();
void Allocate(asUINT numElements, bool keepData);
void AllocateNoConstruct(asUINT numElements, bool keepData);
asUINT GetCapacity() const;
void PushLast(const T &element);
T PopLast();
bool SetLength(asUINT numElements);
bool SetLengthNoConstruct(asUINT numElements);
asUINT GetLength() const;
void Copy(const T*, asUINT count);
asCArray<T> &operator =(const asCArray<T> &);
void SwapWith(asCArray<T> &other);
const T &operator [](asUINT index) const;
T &operator [](asUINT index);
T *AddressOf();
const T *AddressOf() const;
bool Concatenate(const asCArray<T> &);
void Concatenate(T*, unsigned int count);
bool Exists(const T &element) const;
int IndexOf(const T &element) const;
void RemoveIndex(asUINT index); // Removes the entry without reordering the array
void RemoveValue(const T &element); // Removes the value without reordering the array
void RemoveIndexUnordered(asUINT index); // Removes the entry without keeping the order
bool operator==(const asCArray<T> &) const;
bool operator!=(const asCArray<T> &) const;
protected:
T *array;
asUINT length; // 32bits is enough for all uses of this array
asUINT maxLength;
char buf[2*4*AS_PTR_SIZE]; // Avoid dynamically allocated memory for tiny arrays
};
// Implementation
template <class T>
T *asCArray<T>::AddressOf()
{
return array;
}
template <class T>
const T *asCArray<T>::AddressOf() const
{
return array;
}
template <class T>
asCArray<T>::asCArray(void)
{
array = 0;
length = 0;
maxLength = 0;
}
template <class T>
asCArray<T>::asCArray(const asCArray<T> &copy)
{
array = 0;
length = 0;
maxLength = 0;
*this = copy;
}
template <class T>
asCArray<T>::asCArray(asUINT reserve)
{
array = 0;
length = 0;
maxLength = 0;
Allocate(reserve, false);
}
template <class T>
asCArray<T>::~asCArray(void)
{
// Allocating a zero length array will free all memory
Allocate(0,0);
}
template <class T>
asUINT asCArray<T>::GetLength() const
{
return length;
}
template <class T>
const T &asCArray<T>::operator [](asUINT index) const
{
asASSERT(index < length);
return array[index];
}
template <class T>
T &asCArray<T>::operator [](asUINT index)
{
asASSERT(index < length);
return array[index];
}
template <class T>
void asCArray<T>::PushLast(const T &element)
{
if( length == maxLength )
{
if( maxLength == 0 )
Allocate(1, false);
else
Allocate(2*maxLength, true);
if( length == maxLength )
{
// Out of memory. Return without doing anything
return;
}
}
array[length++] = element;
}
template <class T>
T asCArray<T>::PopLast()
{
asASSERT(length > 0);
return array[--length];
}
template <class T>
void asCArray<T>::Allocate(asUINT numElements, bool keepData)
{
// We have 4 situations
// 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller
// 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes
// 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller
// 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes
T *tmp = 0;
if( numElements )
{
if( sizeof(T)*numElements <= sizeof(buf) )
// Use the internal buffer
tmp = reinterpret_cast<T*>(buf);
else
{
// Allocate the array and construct each of the elements
tmp = asNEWARRAY(T,numElements);
if( tmp == 0 )
{
// Out of memory. Return without doing anything
return;
}
}
if( array == tmp )
{
// Construct only the newly allocated elements
for( asUINT n = length; n < numElements; n++ )
new (&tmp[n]) T();
}
else
{
// Construct all elements
for( asUINT n = 0; n < numElements; n++ )
new (&tmp[n]) T();
}
}
if( array )
{
asUINT oldLength = length;
if( array == tmp )
{
if( keepData )
{
if( length > numElements )
length = numElements;
}
else
length = 0;
// Call the destructor for elements that are no longer used
for( asUINT n = length; n < oldLength; n++ )
array[n].~T();
}
else
{
if( keepData )
{
if( length > numElements )
length = numElements;
for( asUINT n = 0; n < length; n++ )
tmp[n] = array[n];
}
else
length = 0;
// Call the destructor for all elements
for( asUINT n = 0; n < oldLength; n++ )
array[n].~T();
if( array != reinterpret_cast<T*>(buf) )
asDELETEARRAY(array);
}
}
array = tmp;
maxLength = numElements;
}
template <class T>
void asCArray<T>::AllocateNoConstruct(asUINT numElements, bool keepData)
{
// We have 4 situations
// 1. The previous array is 8 bytes or smaller and the new array is also 8 bytes or smaller
// 2. The previous array is 8 bytes or smaller and the new array is larger than 8 bytes
// 3. The previous array is larger than 8 bytes and the new array is 8 bytes or smaller
// 4. The previous array is larger than 8 bytes and the new array is also larger than 8 bytes
T *tmp = 0;
if( numElements )
{
if( sizeof(T)*numElements <= sizeof(buf) )
// Use the internal buffer
tmp = reinterpret_cast<T*>(buf);
else
{
// Allocate the array and construct each of the elements
tmp = asNEWARRAY(T,numElements);
if( tmp == 0 )
{
// Out of memory. Return without doing anything
return;
}
}
}
if( array )
{
if( array == tmp )
{
if( keepData )
{
if( length > numElements )
length = numElements;
}
else
length = 0;
}
else
{
if( keepData )
{
if( length > numElements )
length = numElements;
memcpy(tmp, array, sizeof(T)*length);
}
else
length = 0;
if( array != reinterpret_cast<T*>(buf) )
asDELETEARRAY(array);
}
}
array = tmp;
maxLength = numElements;
}
template <class T>
asUINT asCArray<T>::GetCapacity() const
{
return maxLength;
}
template <class T>
bool asCArray<T>::SetLength(asUINT numElements)
{
if( numElements > maxLength )
{
Allocate(numElements, true);
if( numElements > maxLength )
{
// Out of memory. Return without doing anything
return false;
}
}
length = numElements;
return true;
}
template <class T>
bool asCArray<T>::SetLengthNoConstruct(asUINT numElements)
{
if( numElements > maxLength )
{
AllocateNoConstruct(numElements, true);
if( numElements > maxLength )
{
// Out of memory. Return without doing anything
return false;
}
}
length = numElements;
return true;
}
template <class T>
void asCArray<T>::Copy(const T *data, asUINT count)
{
if( maxLength < count )
{
Allocate(count, false);
if( maxLength < count )
{
// Out of memory. Return without doing anything
return;
}
}
for( asUINT n = 0; n < count; n++ )
array[n] = data[n];
length = count;
}
template <class T>
asCArray<T> &asCArray<T>::operator =(const asCArray<T> &copy)
{
Copy(copy.array, copy.length);
return *this;
}
template <class T>
void asCArray<T>::SwapWith(asCArray<T> &other)
{
T *tmpArray = array;
asUINT tmpLength = length;
asUINT tmpMaxLength = maxLength;
char tmpBuf[sizeof(buf)];
memcpy(tmpBuf, buf, sizeof(buf));
array = other.array;
length = other.length;
maxLength = other.maxLength;
memcpy(buf, other.buf, sizeof(buf));
other.array = tmpArray;
other.length = tmpLength;
other.maxLength = tmpMaxLength;
memcpy(other.buf, tmpBuf, sizeof(buf));
// If the data is in the internal buffer, then the array pointer must refer to it
if( array == reinterpret_cast<T*>(other.buf) )
array = reinterpret_cast<T*>(buf);
if( other.array == reinterpret_cast<T*>(buf) )
other.array = reinterpret_cast<T*>(other.buf);
}
template <class T>
bool asCArray<T>::operator ==(const asCArray<T> &other) const
{
if( length != other.length ) return false;
for( asUINT n = 0; n < length; n++ )
if( array[n] != other.array[n] )
return false;
return true;
}
template <class T>
bool asCArray<T>::operator !=(const asCArray<T> &other) const
{
return !(*this == other);
}
// Returns false if the concatenation wasn't successful due to out of memory
template <class T>
bool asCArray<T>::Concatenate(const asCArray<T> &other)
{
if( maxLength < length + other.length )
{
Allocate(length + other.length, true);
if( maxLength < length + other.length )
{
// Out of memory
return false;
}
}
for( asUINT n = 0; n < other.length; n++ )
array[length+n] = other.array[n];
length += other.length;
// Success
return true;
}
template <class T>
void asCArray<T>::Concatenate(T* other, unsigned int count)
{
for( unsigned int c = 0; c < count; c++ )
PushLast(other[c]);
}
template <class T>
bool asCArray<T>::Exists(const T &e) const
{
return IndexOf(e) == -1 ? false : true;
}
template <class T>
int asCArray<T>::IndexOf(const T &e) const
{
for( asUINT n = 0; n < length; n++ )
if( array[n] == e ) return static_cast<int>(n);
return -1;
}
template <class T>
void asCArray<T>::RemoveIndex(asUINT index)
{
if( index < length )
{
for( asUINT n = index; n < length-1; n++ )
array[n] = array[n+1];
PopLast();
}
}
template <class T>
void asCArray<T>::RemoveValue(const T &e)
{
for( asUINT n = 0; n < length; n++ )
{
if( array[n] == e )
{
RemoveIndex(n);
break;
}
}
}
template <class T>
void asCArray<T>::RemoveIndexUnordered(asUINT index)
{
if( index == length - 1 )
PopLast();
else if( index < length )
array[index] = PopLast();
}
END_AS_NAMESPACE
#endif