/* AngelCode Scripting Library Copyright (c) 2003-2015 Andreas Jonsson This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. The original version of this library can be located at: http://www.angelcode.com/angelscript/ Andreas Jonsson andreas@angelcode.com */ // // as_tokenizer.cpp // // This class identifies tokens from the script code // #include "as_config.h" #include "as_scriptengine.h" #include "as_tokenizer.h" #include "as_tokendef.h" #if !defined(AS_NO_MEMORY_H) #include #endif #include // strcmp() BEGIN_AS_NAMESPACE asCTokenizer::asCTokenizer() { engine = 0; memset(keywordTable, 0, sizeof(keywordTable)); // Initialize the jump table for( asUINT n = 0; n < numTokenWords; n++ ) { const sTokenWord& current = tokenWords[n]; unsigned char start = current.word[0]; // Create new jump table entry if none exists if( !keywordTable[start] ) { // Surely there won't ever be more than 32 keywords starting with // the same character. Right? keywordTable[start] = asNEWARRAY(const sTokenWord*, 32); memset(keywordTable[start], 0, sizeof(sTokenWord*)*32); } // Add the token sorted from longest to shortest so // we check keywords greedily. const sTokenWord** tok = keywordTable[start]; unsigned insert = 0, index = 0; while( tok[index] ) { if(tok[index]->wordLength >= current.wordLength) ++insert; ++index; } while( index > insert ) { tok[index] = tok[index - 1]; --index; } tok[insert] = ¤t; } } asCTokenizer::~asCTokenizer() { // Deallocate the jump table for( asUINT n = 0; n < 256; n++ ) { if( keywordTable[n] ) asDELETEARRAY(keywordTable[n]); } } // static const char *asCTokenizer::GetDefinition(int tokenType) { if( tokenType == ttUnrecognizedToken ) return ""; if( tokenType == ttEnd ) return ""; if( tokenType == ttWhiteSpace ) return ""; if( tokenType == ttOnelineComment ) return ""; if( tokenType == ttMultilineComment ) return ""; if( tokenType == ttIdentifier ) return ""; if( tokenType == ttIntConstant ) return ""; if( tokenType == ttFloatConstant ) return ""; if( tokenType == ttDoubleConstant ) return ""; if( tokenType == ttStringConstant ) return ""; if( tokenType == ttMultilineStringConstant ) return ""; if( tokenType == ttNonTerminatedStringConstant ) return ""; if( tokenType == ttBitsConstant ) return ""; if( tokenType == ttHeredocStringConstant ) return ""; for( asUINT n = 0; n < numTokenWords; n++ ) if( tokenWords[n].tokenType == tokenType ) return tokenWords[n].word; return 0; } bool asCTokenizer::IsDigitInRadix(char ch, int radix) const { if( ch >= '0' && ch <= '9' ) return (ch -= '0') < radix; if( ch >= 'A' && ch <= 'Z' ) return (ch -= 'A'-10) < radix; if( ch >= 'a' && ch <= 'z' ) return (ch -= 'a'-10) < radix; return false; } eTokenType asCTokenizer::GetToken(const char *source, size_t sourceLength, size_t *tokenLength, asETokenClass *tc) const { asASSERT(source != 0); asASSERT(tokenLength != 0); eTokenType tokenType; size_t tlen; asETokenClass t = ParseToken(source, sourceLength, tlen, tokenType); if( tc ) *tc = t; if( tokenLength ) *tokenLength = tlen; return tokenType; } asETokenClass asCTokenizer::ParseToken(const char *source, size_t sourceLength, size_t &tokenLength, eTokenType &tokenType) const { if( IsWhiteSpace(source, sourceLength, tokenLength, tokenType) ) return asTC_WHITESPACE; if( IsComment(source, sourceLength, tokenLength, tokenType) ) return asTC_COMMENT; if( IsConstant(source, sourceLength, tokenLength, tokenType) ) return asTC_VALUE; if( IsIdentifier(source, sourceLength, tokenLength, tokenType) ) return asTC_IDENTIFIER; if( IsKeyWord(source, sourceLength, tokenLength, tokenType) ) return asTC_KEYWORD; // If none of the above this is an unrecognized token // We can find the length of the token by advancing // one step and trying to identify a token there tokenType = ttUnrecognizedToken; tokenLength = 1; return asTC_UNKNOWN; } bool asCTokenizer::IsWhiteSpace(const char *source, size_t sourceLength, size_t &tokenLength, eTokenType &tokenType) const { // Treat UTF8 byte-order-mark (EF BB BF) as whitespace if( sourceLength >= 3 && asBYTE(source[0]) == 0xEFu && asBYTE(source[1]) == 0xBBu && asBYTE(source[2]) == 0xBFu ) { tokenType = ttWhiteSpace; tokenLength = 3; return true; } // Group all other white space characters into one size_t n; int numWsChars = (int)strlen(whiteSpace); for( n = 0; n < sourceLength; n++ ) { bool isWhiteSpace = false; for( int w = 0; w < numWsChars; w++ ) { if( source[n] == whiteSpace[w] ) { isWhiteSpace = true; break; } } if( !isWhiteSpace ) break; } if( n > 0 ) { tokenType = ttWhiteSpace; tokenLength = n; return true; } return false; } bool asCTokenizer::IsComment(const char *source, size_t sourceLength, size_t &tokenLength, eTokenType &tokenType) const { if( sourceLength < 2 ) return false; if( source[0] != '/' ) return false; if( source[1] == '/' ) { // One-line comment // Find the length size_t n; for( n = 2; n < sourceLength; n++ ) { if( source[n] == '\n' ) break; } tokenType = ttOnelineComment; tokenLength = n < sourceLength ? n+1 : n; return true; } if( source[1] == '*' ) { // Multi-line comment // Find the length size_t n; for( n = 2; n < sourceLength-1; ) { if( source[n++] == '*' && source[n] == '/' ) break; } tokenType = ttMultilineComment; tokenLength = n+1; return true; } return false; } bool asCTokenizer::IsConstant(const char *source, size_t sourceLength, size_t &tokenLength, eTokenType &tokenType) const { // Starting with number if( (source[0] >= '0' && source[0] <= '9') || (source[0] == '.' && sourceLength > 1 && source[1] >= '0' && source[1] <= '9') ) { // Is it a based number? if( source[0] == '0' && sourceLength > 1 ) { // Determine the radix for the constant int radix = 0; switch( source[1] ) { case 'b': case 'B': radix = 2; break; case 'o': case 'O': radix = 8; break; case 'd': case 'D': radix = 10; break; case 'x': case 'X': radix = 16; break; } if( radix ) { size_t n; for( n = 2; n < sourceLength; n++ ) if( !IsDigitInRadix(source[n], radix) ) break; tokenType = ttBitsConstant; tokenLength = n; return true; } } size_t n; for( n = 0; n < sourceLength; n++ ) { if( source[n] < '0' || source[n] > '9' ) break; } if( n < sourceLength && (source[n] == '.' || source[n] == 'e' || source[n] == 'E') ) { if( source[n] == '.' ) { n++; for( ; n < sourceLength; n++ ) { if( source[n] < '0' || source[n] > '9' ) break; } } if( n < sourceLength && (source[n] == 'e' || source[n] == 'E') ) { n++; if( n < sourceLength && (source[n] == '-' || source[n] == '+') ) n++; for( ; n < sourceLength; n++ ) { if( source[n] < '0' || source[n] > '9' ) break; } } if( n < sourceLength && (source[n] == 'f' || source[n] == 'F') ) { tokenType = ttFloatConstant; tokenLength = n + 1; } else { #ifdef AS_USE_DOUBLE_AS_FLOAT tokenType = ttFloatConstant; #else tokenType = ttDoubleConstant; #endif tokenLength = n; } return true; } tokenType = ttIntConstant; tokenLength = n; return true; } // String constant between double or single quotes if( source[0] == '"' || source[0] == '\'' ) { // Is it a normal string constant or a heredoc string constant? if( sourceLength >= 6 && source[0] == '"' && source[1] == '"' && source[2] == '"' ) { // Heredoc string constant (spans multiple lines, no escape sequences) // Find the length size_t n; for( n = 3; n < sourceLength-2; n++ ) { if( source[n] == '"' && source[n+1] == '"' && source[n+2] == '"' ) break; } tokenType = ttHeredocStringConstant; tokenLength = n+3; } else { // Normal string constant tokenType = ttStringConstant; char quote = source[0]; bool evenSlashes = true; size_t n; for( n = 1; n < sourceLength; n++ ) { #ifdef AS_DOUBLEBYTE_CHARSET // Double-byte characters are only allowed for ASCII if( (source[n] & 0x80) && engine->ep.scanner == 0 ) { // This is a leading character in a double byte character, // include both in the string and continue processing. n++; continue; } #endif if( source[n] == '\n' ) tokenType = ttMultilineStringConstant; if( source[n] == quote && evenSlashes ) { tokenLength = n+1; return true; } if( source[n] == '\\' ) evenSlashes = !evenSlashes; else evenSlashes = true; } tokenType = ttNonTerminatedStringConstant; tokenLength = n; } return true; } return false; } bool asCTokenizer::IsIdentifier(const char *source, size_t sourceLength, size_t &tokenLength, eTokenType &tokenType) const { // char is unsigned by default on some architectures, e.g. ppc and arm // Make sure the value is always treated as signed in the below comparisons signed char c = source[0]; // Starting with letter or underscore if( (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_' || (c < 0 && engine->ep.allowUnicodeIdentifiers) ) { tokenType = ttIdentifier; tokenLength = 1; for( size_t n = 1; n < sourceLength; n++ ) { c = source[n]; if( (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_' || (c < 0 && engine->ep.allowUnicodeIdentifiers) ) tokenLength++; else break; } // Make sure the identifier isn't a reserved keyword if( IsKeyWord(source, tokenLength, tokenLength, tokenType) ) return false; return true; } return false; } bool asCTokenizer::IsKeyWord(const char *source, size_t sourceLength, size_t &tokenLength, eTokenType &tokenType) const { unsigned char start = source[0]; const sTokenWord **ptr = keywordTable[start]; if( !ptr ) return false; for( ; *ptr; ++ptr ) { size_t wlen = (*ptr)->wordLength; if( sourceLength >= wlen && strncmp(source, (*ptr)->word, wlen) == 0 ) { // Tokens that end with a character that can be part of an // identifier require an extra verification to guarantee that // we don't split an identifier token, e.g. the "!is" token // and the tokens "!" and "isTrue" in the "!isTrue" expression. if( wlen < sourceLength && ((source[wlen-1] >= 'a' && source[wlen-1] <= 'z') || (source[wlen-1] >= 'A' && source[wlen-1] <= 'Z') || (source[wlen-1] >= '0' && source[wlen-1] <= '9')) && ((source[wlen] >= 'a' && source[wlen] <= 'z') || (source[wlen] >= 'A' && source[wlen] <= 'Z') || (source[wlen] >= '0' && source[wlen] <= '9') || (source[wlen] == '_')) ) { // The token doesn't really match, even though // the start of the source matches the token continue; } tokenType = (*ptr)->tokenType; tokenLength = wlen; return true; } } return false; } END_AS_NAMESPACE