#include #include #include #include #include "scriptmath.h" #ifdef __BORLANDC__ #include // The C++Builder RTL doesn't pull the *f functions into the global namespace per default. using namespace std; #if __BORLANDC__ < 0x580 // C++Builder 6 and earlier don't come with any *f variants of the math functions at all. inline float cosf (float arg) { return std::cos (arg); } inline float sinf (float arg) { return std::sin (arg); } inline float tanf (float arg) { return std::tan (arg); } inline float atan2f (float y, float x) { return std::atan2 (y, x); } inline float logf (float arg) { return std::log (arg); } inline float powf (float x, float y) { return std::pow (x, y); } inline float sqrtf (float arg) { return std::sqrt (arg); } #endif // C++Builder doesn't define most of the non-standard float-specific math functions with // "*f" suffix; instead it provides overloads for the standard math functions which take // "float" arguments. inline float acosf (float arg) { return std::acos (arg); } inline float asinf (float arg) { return std::asin (arg); } inline float atanf (float arg) { return std::atan (arg); } inline float coshf (float arg) { return std::cosh (arg); } inline float sinhf (float arg) { return std::sinh (arg); } inline float tanhf (float arg) { return std::tanh (arg); } inline float log10f (float arg) { return std::log10 (arg); } inline float ceilf (float arg) { return std::ceil (arg); } inline float fabsf (float arg) { return std::fabs (arg); } inline float floorf (float arg) { return std::floor (arg); } // C++Builder doesn't define a non-standard "modff" function but rather an overload of "modf" // for float arguments. However, BCC's float overload of fmod() is broken (QC #74816; fixed // in C++Builder 2010). inline float modff (float x, float *y) { double d; float f = (float) modf((double) x, &d); *y = (float) d; return f; } #endif BEGIN_AS_NAMESPACE // Determine whether the float version should be registered, or the double version #ifndef AS_USE_FLOAT #if !defined(_WIN32_WCE) // WinCE doesn't have the float versions of the math functions #define AS_USE_FLOAT 1 #endif #endif // The modf function doesn't seem very intuitive, so I'm writing this // function that simply returns the fractional part of the float value #if AS_USE_FLOAT float fractionf(float v) { float intPart; return modff(v, &intPart); } #else double fraction(double v) { double intPart; return modf(v, &intPart); } #endif // As AngelScript doesn't allow bitwise manipulation of float types we'll provide a couple of // functions for converting float values to IEEE 754 formatted values etc. This also allow us to // provide a platform agnostic representation to the script so the scripts don't have to worry // about whether the CPU uses IEEE 754 floats or some other representation float fpFromIEEE(asUINT raw) { // TODO: Identify CPU family to provide proper conversion // if the CPU doesn't natively use IEEE style floats return *reinterpret_cast(&raw); } asUINT fpToIEEE(float fp) { return *reinterpret_cast(&fp); } double fpFromIEEE(asQWORD raw) { return *reinterpret_cast(&raw); } asQWORD fpToIEEE(double fp) { return *reinterpret_cast(&fp); } // closeTo() is used to determine if the binary representation of two numbers are // relatively close to each other. Numerical errors due to rounding errors build // up over many operations, so it is almost impossible to get exact numbers and // this is where closeTo() comes in. // // It shouldn't be used to determine if two numbers are mathematically close to // each other. // // ref: http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm // ref: http://www.gamedev.net/topic/653449-scriptmath-and-closeto/ bool closeTo(float a, float b, float epsilon) { // Equal numbers and infinity will return immediately if( a == b ) return true; // When very close to 0, we can use the absolute comparison float diff = fabsf(a - b); if( (a == 0 || b == 0) && (diff < epsilon) ) return true; // Otherwise we need to use relative comparison to account for precision return diff / (fabs(a) + fabs(b)) < epsilon; } bool closeTo(double a, double b, double epsilon) { if( a == b ) return true; double diff = fabs(a - b); if( (a == 0 || b == 0) && (diff < epsilon) ) return true; return diff / (fabs(a) + fabs(b)) < epsilon; } void RegisterScriptMath_Native(asIScriptEngine *engine) { int r; // Conversion between floating point and IEEE bits representations r = engine->RegisterGlobalFunction("float fpFromIEEE(uint)", asFUNCTIONPR(fpFromIEEE, (asUINT), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("uint fpToIEEE(float)", asFUNCTIONPR(fpToIEEE, (float), asUINT), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double fpFromIEEE(uint64)", asFUNCTIONPR(fpFromIEEE, (asQWORD), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("uint64 fpToIEEE(double)", asFUNCTIONPR(fpToIEEE, (double), asQWORD), asCALL_CDECL); assert( r >= 0 ); // Close to comparison with epsilon r = engine->RegisterGlobalFunction("bool closeTo(float, float, float = 0.00001f)", asFUNCTIONPR(closeTo, (float, float, float), bool), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("bool closeTo(double, double, double = 0.0000000001)", asFUNCTIONPR(closeTo, (double, double, double), bool), asCALL_CDECL); assert( r >= 0 ); #if AS_USE_FLOAT // Trigonometric functions r = engine->RegisterGlobalFunction("float cos(float)", asFUNCTIONPR(cosf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float sin(float)", asFUNCTIONPR(sinf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float tan(float)", asFUNCTIONPR(tanf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float acos(float)", asFUNCTIONPR(acosf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float asin(float)", asFUNCTIONPR(asinf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float atan(float)", asFUNCTIONPR(atanf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float atan2(float,float)", asFUNCTIONPR(atan2f, (float, float), float), asCALL_CDECL); assert( r >= 0 ); // Hyberbolic functions r = engine->RegisterGlobalFunction("float cosh(float)", asFUNCTIONPR(coshf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float sinh(float)", asFUNCTIONPR(sinhf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float tanh(float)", asFUNCTIONPR(tanhf, (float), float), asCALL_CDECL); assert( r >= 0 ); // Exponential and logarithmic functions r = engine->RegisterGlobalFunction("float log(float)", asFUNCTIONPR(logf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float log10(float)", asFUNCTIONPR(log10f, (float), float), asCALL_CDECL); assert( r >= 0 ); // Power functions r = engine->RegisterGlobalFunction("float pow(float, float)", asFUNCTIONPR(powf, (float, float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float sqrt(float)", asFUNCTIONPR(sqrtf, (float), float), asCALL_CDECL); assert( r >= 0 ); // Nearest integer, absolute value, and remainder functions r = engine->RegisterGlobalFunction("float ceil(float)", asFUNCTIONPR(ceilf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float abs(float)", asFUNCTIONPR(fabsf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float floor(float)", asFUNCTIONPR(floorf, (float), float), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float fraction(float)", asFUNCTIONPR(fractionf, (float), float), asCALL_CDECL); assert( r >= 0 ); // Don't register modf because AngelScript already supports the % operator #else // double versions of the same r = engine->RegisterGlobalFunction("double cos(double)", asFUNCTIONPR(cos, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double sin(double)", asFUNCTIONPR(sin, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double tan(double)", asFUNCTIONPR(tan, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double acos(double)", asFUNCTIONPR(acos, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double asin(double)", asFUNCTIONPR(asin, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double atan(double)", asFUNCTIONPR(atan, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double atan2(double,double)", asFUNCTIONPR(atan2, (double, double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double cosh(double)", asFUNCTIONPR(cosh, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double sinh(double)", asFUNCTIONPR(sinh, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double tanh(double)", asFUNCTIONPR(tanh, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double log(double)", asFUNCTIONPR(log, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double log10(double)", asFUNCTIONPR(log10, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double pow(double, double)", asFUNCTIONPR(pow, (double, double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double sqrt(double)", asFUNCTIONPR(sqrt, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double ceil(double)", asFUNCTIONPR(ceil, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double abs(double)", asFUNCTIONPR(fabs, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double floor(double)", asFUNCTIONPR(floor, (double), double), asCALL_CDECL); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double fraction(double)", asFUNCTIONPR(fraction, (double), double), asCALL_CDECL); assert( r >= 0 ); #endif } #if AS_USE_FLOAT // This macro creates simple generic wrappers for functions of type 'float func(float)' #define GENERICff(x) \ void x##_generic(asIScriptGeneric *gen) \ { \ float f = *(float*)gen->GetAddressOfArg(0); \ *(float*)gen->GetAddressOfReturnLocation() = x(f); \ } GENERICff(cosf) GENERICff(sinf) GENERICff(tanf) GENERICff(acosf) GENERICff(asinf) GENERICff(atanf) GENERICff(coshf) GENERICff(sinhf) GENERICff(tanhf) GENERICff(logf) GENERICff(log10f) GENERICff(sqrtf) GENERICff(ceilf) GENERICff(fabsf) GENERICff(floorf) GENERICff(fractionf) void powf_generic(asIScriptGeneric *gen) { float f1 = *(float*)gen->GetAddressOfArg(0); float f2 = *(float*)gen->GetAddressOfArg(1); *(float*)gen->GetAddressOfReturnLocation() = powf(f1, f2); } void atan2f_generic(asIScriptGeneric *gen) { float f1 = *(float*)gen->GetAddressOfArg(0); float f2 = *(float*)gen->GetAddressOfArg(1); *(float*)gen->GetAddressOfReturnLocation() = atan2f(f1, f2); } #else // This macro creates simple generic wrappers for functions of type 'double func(double)' #define GENERICdd(x) \ void x##_generic(asIScriptGeneric *gen) \ { \ double f = *(double*)gen->GetAddressOfArg(0); \ *(double*)gen->GetAddressOfReturnLocation() = x(f); \ } GENERICdd(cos) GENERICdd(sin) GENERICdd(tan) GENERICdd(acos) GENERICdd(asin) GENERICdd(atan) GENERICdd(cosh) GENERICdd(sinh) GENERICdd(tanh) GENERICdd(log) GENERICdd(log10) GENERICdd(sqrt) GENERICdd(ceil) GENERICdd(fabs) GENERICdd(floor) GENERICdd(fraction) void pow_generic(asIScriptGeneric *gen) { double f1 = *(double*)gen->GetAddressOfArg(0); double f2 = *(double*)gen->GetAddressOfArg(1); *(double*)gen->GetAddressOfReturnLocation() = pow(f1, f2); } void atan2_generic(asIScriptGeneric *gen) { double f1 = *(double*)gen->GetAddressOfArg(0); double f2 = *(double*)gen->GetAddressOfArg(1); *(double*)gen->GetAddressOfReturnLocation() = atan2(f1, f2); } #endif void RegisterScriptMath_Generic(asIScriptEngine *engine) { int r; #if AS_USE_FLOAT // Trigonometric functions r = engine->RegisterGlobalFunction("float cos(float)", asFUNCTION(cosf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float sin(float)", asFUNCTION(sinf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float tan(float)", asFUNCTION(tanf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float acos(float)", asFUNCTION(acosf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float asin(float)", asFUNCTION(asinf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float atan(float)", asFUNCTION(atanf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float atan2(float,float)", asFUNCTION(atan2f_generic), asCALL_GENERIC); assert( r >= 0 ); // Hyberbolic functions r = engine->RegisterGlobalFunction("float cosh(float)", asFUNCTION(coshf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float sinh(float)", asFUNCTION(sinhf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float tanh(float)", asFUNCTION(tanhf_generic), asCALL_GENERIC); assert( r >= 0 ); // Exponential and logarithmic functions r = engine->RegisterGlobalFunction("float log(float)", asFUNCTION(logf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float log10(float)", asFUNCTION(log10f_generic), asCALL_GENERIC); assert( r >= 0 ); // Power functions r = engine->RegisterGlobalFunction("float pow(float, float)", asFUNCTION(powf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float sqrt(float)", asFUNCTION(sqrtf_generic), asCALL_GENERIC); assert( r >= 0 ); // Nearest integer, absolute value, and remainder functions r = engine->RegisterGlobalFunction("float ceil(float)", asFUNCTION(ceilf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float abs(float)", asFUNCTION(fabsf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float floor(float)", asFUNCTION(floorf_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("float fraction(float)", asFUNCTION(fractionf_generic), asCALL_GENERIC); assert( r >= 0 ); // Don't register modf because AngelScript already supports the % operator #else // double versions of the same r = engine->RegisterGlobalFunction("double cos(double)", asFUNCTION(cos_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double sin(double)", asFUNCTION(sin_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double tan(double)", asFUNCTION(tan_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double acos(double)", asFUNCTION(acos_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double asin(double)", asFUNCTION(asin_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double atan(double)", asFUNCTION(atan_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double atan2(double,double)", asFUNCTION(atan2_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double cosh(double)", asFUNCTION(cosh_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double sinh(double)", asFUNCTION(sinh_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double tanh(double)", asFUNCTION(tanh_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double log(double)", asFUNCTION(log_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double log10(double)", asFUNCTION(log10_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double pow(double, double)", asFUNCTION(pow_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double sqrt(double)", asFUNCTION(sqrt_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double ceil(double)", asFUNCTION(ceil_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double abs(double)", asFUNCTION(fabs_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double floor(double)", asFUNCTION(floor_generic), asCALL_GENERIC); assert( r >= 0 ); r = engine->RegisterGlobalFunction("double fraction(double)", asFUNCTION(fraction_generic), asCALL_GENERIC); assert( r >= 0 ); #endif } void RegisterScriptMath(asIScriptEngine *engine) { if( strstr(asGetLibraryOptions(), "AS_MAX_PORTABILITY") ) RegisterScriptMath_Generic(engine); else RegisterScriptMath_Native(engine); } END_AS_NAMESPACE