Angelscript/angelscript/source/as_callfunc_ppc_64.cpp

774 lines
27 KiB
C++
Raw Normal View History

2021-04-12 18:25:02 +00:00
/*
AngelCode Scripting Library
Copyright (c) 2003-2016 Andreas Jonsson
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
The original version of this library can be located at:
http://www.angelcode.com/angelscript/
Andreas Jonsson
andreas@angelcode.com
*/
//
// as_callfunc_ppc_64.cpp
//
// These functions handle the actual calling of system functions
//
// This version is 64 bit PPC specific
//
#include "as_config.h"
#ifndef AS_MAX_PORTABILITY
#ifdef AS_PPC_64
#if AS_PTR_SIZE == 2
// TODO: Add support for PPC 64bit platforms with 64bit pointers, for example Linux PPC64 (big endian) and PPC64 (little endian)
#error This code has not been prepared for PPC with 64bit pointers. Most likely the ABI is different
#else
#include "as_callfunc.h"
#include "as_scriptengine.h"
#include "as_texts.h"
#include "as_tokendef.h"
#include "as_context.h"
#include <stdio.h>
#include <stdlib.h>
#ifdef __SNC__
#include "ppu_asm_intrinsics.h"
#endif
BEGIN_AS_NAMESPACE
// This part was written and tested by Jeff Slutter
// from Reactor Zero, Abril, 2007, for PlayStation 3, which
// is a PowerPC 64bit based architecture. Even though it is
// 64bit it seems the pointer size is still 32bit.
// It still remains to be seen how well this code works
// on other PPC platforms, such as XBox 360, GameCube.
#define AS_PPC_MAX_ARGS 32
// The array used to send values to the correct places.
// Contains a byte of argTypes to indicate the register type to load
// or zero if end of arguments
// The +1 is for when CallThis (object methods) is used
// Extra +1 when returning in memory
// Extra +1 in ppcArgsType to ensure zero end-of-args marker
// TODO: multithread: The global variables must be removed to make the code thread safe
extern "C"
{
enum argTypes { ppcENDARG = 0, ppcINTARG = 1, ppcFLOATARG = 2, ppcDOUBLEARG = 3, ppcLONGARG = 4 };
static asBYTE ppcArgsType[AS_PPC_MAX_ARGS + 1 + 1 + 1];
static asDWORD ppcArgs[2*AS_PPC_MAX_ARGS + 1 + 1];
}
// NOTE: these values are for PowerPC 64 bit. I'm sure things are different for PowerPC 32bit, but I don't have one.
// I'm pretty sure that PPC 32bit sets up a stack frame slightly different (only 24 bytes for linkage area for instance)
#define PPC_LINKAGE_SIZE (0x30) // how big the PPC linkage area is in a stack frame
#define PPC_NUM_REGSTORE (10) // how many registers of the PPC we need to store/restore for ppcFunc64()
#define PPC_REGSTORE_SIZE (8*PPC_NUM_REGSTORE) // how many bytes are required for register store/restore
#define EXTRA_STACK_SIZE (PPC_LINKAGE_SIZE + PPC_REGSTORE_SIZE) // memory required, not including parameters, for the stack frame
#define PPC_STACK_SIZE(numParams) ( -(( ( (((numParams)<8)?8:(numParams))<<3) + EXTRA_STACK_SIZE + 15 ) & ~15) ) // calculates the total stack size needed for ppcFunc64, must pad to 16bytes
// This is PowerPC 64 bit specific
// Loads all data into the correct places and calls the function.
// ppcArgsType is an array containing a byte type (enum argTypes) for each argument.
// StackArgSizeInBytes is the size in bytes of the stack frame (takes into account linkage area, etc. must be multiple of 16)
extern "C" asQWORD ppcFunc64(const asDWORD* argsPtr, int StackArgSizeInBytes, asDWORD func);
asm(""
".text\n"
".align 4\n"
".p2align 4,,15\n"
".globl .ppcFunc64\n"
".ppcFunc64:\n"
// function prolog
"std %r22, -0x08(%r1)\n" // we need a register other than r0, to store the old stack pointer
"mr %r22, %r1\n" // store the old stack pointer, for now (to make storing registers easier)
"stdux %r1, %r1, %r4\n" // atomically store and update the stack pointer for the new stack frame (in case of a signal/interrupt)
"mflr %r0\n" // get the caller's LR register
"std %r0, 0x10(%r22)\n" // store the caller's LR register
"std %r23, -0x10(%r22)\n" //
"std %r24, -0x18(%r22)\n" //
"std %r25, -0x20(%r22)\n" //
"std %r26, -0x28(%r22)\n" //
"std %r27, -0x30(%r22)\n" //
"std %r28, -0x38(%r22)\n" //
"std %r29, -0x40(%r22)\n" //
"std %r30, -0x48(%r22)\n" //
"std %r31, -0x50(%r22)\n" //
"std %r3, 0x30(%r22)\n" // save our parameters
"std %r4, 0x38(%r22)\n" //
"std %r5, 0x40(%r22)\n" //
"mr %r31, %r1\n" // functions tend to store the stack pointer here too
// initial registers for the function
"mr %r29, %r3\n" // (r29) args list
"lwz %r27, 0(%r5)\n" // load the function pointer to call. func actually holds the pointer to our function
"addi %r26, %r1, 0x30\n" // setup the pointer to the parameter area to the function we're going to call
"sub %r0,%r0,%r0\n" // zero out r0
"mr %r23,%r0\n" // zero out r23, which holds the number of used GPR registers
"mr %r22,%r0\n" // zero our r22, which holds the number of used float registers
// load the global ppcArgsType which holds the types of arguments for each argument
"lis %r25, ppcArgsType@ha\n" // load the upper 16 bits of the address to r25
"addi %r25, %r25, ppcArgsType@l\n" // load the lower 16 bits of the address to r25
"subi %r25, %r25, 1\n" // since we increment r25 on its use, we'll pre-decrement it
// loop through the arguments
"ppcNextArg:\n"
"addi %r25, %r25, 1\n" // increment r25, our arg type pointer
// switch based on the current argument type (0:end, 1:int, 2:float 3:double)
"lbz %r24, 0(%r25)\n" // load the current argument type (it's a byte)
"mulli %r24, %r24, 4\n" // our jump table has 4 bytes per case (1 instruction)
"lis %r30, ppcTypeSwitch@ha\n" // load the address of the jump table for the switch
"addi %r30, %r30, ppcTypeSwitch@l\n"
"add %r0, %r30, %r24\n" // offset by our argument type
"mtctr %r0\n" // load the jump address into CTR
"bctr\n" // jump into the jump table/switch
"nop\n"
// the jump table/switch based on the current argument type
"ppcTypeSwitch:\n"
"b ppcArgsEnd\n"
"b ppcArgIsInteger\n"
"b ppcArgIsFloat\n"
"b ppcArgIsDouble\n"
"b ppcArgIsLong\n"
// when we get here we have finished processing all the arguments
// everything is ready to go to call the function
"ppcArgsEnd:\n"
"mtctr %r27\n" // the function pointer is stored in r27, load that into CTR
"bctrl\n" // call the function. We have to do it this way so that the LR gets the proper
"nop\n" // return value (the next instruction below). So we have to branch from CTR instead of LR.
// when we get here, the function has returned, this is the function epilog
"ld %r11,0x00(%r1)\n" // load in the caller's stack pointer
"ld %r0,0x10(%r11)\n" // load in the caller's LR
"mtlr %r0\n" // restore the caller's LR
"ld %r22, -0x08(%r11)\n" // load registers
"ld %r23, -0x10(%r11)\n" //
"ld %r24, -0x18(%r11)\n" //
"ld %r25, -0x20(%r11)\n" //
"ld %r26, -0x28(%r11)\n" //
"ld %r27, -0x30(%r11)\n" //
"ld %r28, -0x38(%r11)\n" //
"ld %r29, -0x40(%r11)\n" //
"ld %r30, -0x48(%r11)\n" //
"ld %r31, -0x50(%r11)\n" //
"mr %r1, %r11\n" // restore the caller's SP
"blr\n" // return back to the caller
"nop\n"
// Integer argument (GPR register)
"ppcArgIsInteger:\n"
"lis %r30,ppcLoadIntReg@ha\n" // load the address to the jump table for integer registers
"addi %r30, %r30, ppcLoadIntReg@l\n"
"mulli %r0, %r23, 8\n" // each item in the jump table is 2 instructions (8 bytes)
"add %r0, %r0, %r30\n" // calculate ppcLoadIntReg[numUsedGPRRegs]
"lwz %r30,0(%r29)\n" // load the next argument from the argument list into r30
"cmpwi %r23, 8\n" // we can only load GPR3 through GPR10 (8 registers)
"bgt ppcLoadIntRegUpd\n" // if we're beyond 8 GPR registers, we're in the stack, go there
"mtctr %r0\n" // load the address of our ppcLoadIntReg jump table (we're below 8 GPR registers)
"bctr\n" // load the argument into a GPR register
"nop\n"
// jump table for GPR registers, for the first 8 GPR arguments
"ppcLoadIntReg:\n"
"mr %r3,%r30\n" // arg0 (to r3)
"b ppcLoadIntRegUpd\n"
"mr %r4,%r30\n" // arg1 (to r4)
"b ppcLoadIntRegUpd\n"
"mr %r5,%r30\n" // arg2 (to r5)
"b ppcLoadIntRegUpd\n"
"mr %r6,%r30\n" // arg3 (to r6)
"b ppcLoadIntRegUpd\n"
"mr %r7,%r30\n" // arg4 (to r7)
"b ppcLoadIntRegUpd\n"
"mr %r8,%r30\n" // arg5 (to r8)
"b ppcLoadIntRegUpd\n"
"mr %r9,%r30\n" // arg6 (to r9)
"b ppcLoadIntRegUpd\n"
"mr %r10,%r30\n" // arg7 (to r10)
"b ppcLoadIntRegUpd\n"
// all GPR arguments still go on the stack
"ppcLoadIntRegUpd:\n"
"std %r30,0(%r26)\n" // store the argument into the next slot on the stack's argument list
"addi %r23, %r23, 1\n" // count a used GPR register
"addi %r29, %r29, 4\n" // move to the next argument on the list
"addi %r26, %r26, 8\n" // adjust our argument stack pointer for the next
"b ppcNextArg\n" // next argument
// single Float argument
"ppcArgIsFloat:\n"
"lis %r30,ppcLoadFloatReg@ha\n" // get the base address of the float register jump table
"addi %r30, %r30, ppcLoadFloatReg@l\n"
"mulli %r0, %r22 ,8\n" // each jump table entry is 8 bytes
"add %r0, %r0, %r30\n" // calculate the offset to ppcLoadFloatReg[numUsedFloatReg]
"lfs 0, 0(%r29)\n" // load the next argument as a float into f0
"cmpwi %r22, 13\n" // can't load more than 13 float/double registers
"bgt ppcLoadFloatRegUpd\n" // if we're beyond 13 registers, just fall to inserting into the stack
"mtctr %r0\n" // jump into the float jump table
"bctr\n"
"nop\n"
// jump table for float registers, for the first 13 float arguments
"ppcLoadFloatReg:\n"
"fmr 1,0\n" // arg0 (f1)
"b ppcLoadFloatRegUpd\n"
"fmr 2,0\n" // arg1 (f2)
"b ppcLoadFloatRegUpd\n"
"fmr 3,0\n" // arg2 (f3)
"b ppcLoadFloatRegUpd\n"
"fmr 4,0\n" // arg3 (f4)
"b ppcLoadFloatRegUpd\n"
"fmr 5,0\n" // arg4 (f5)
"b ppcLoadFloatRegUpd\n"
"fmr 6,0\n" // arg5 (f6)
"b ppcLoadFloatRegUpd\n"
"fmr 7,0\n" // arg6 (f7)
"b ppcLoadFloatRegUpd\n"
"fmr 8,0\n" // arg7 (f8)
"b ppcLoadFloatRegUpd\n"
"fmr 9,0\n" // arg8 (f9)
"b ppcLoadFloatRegUpd\n"
"fmr 10,0\n" // arg9 (f10)
"b ppcLoadFloatRegUpd\n"
"fmr 11,0\n" // arg10 (f11)
"b ppcLoadFloatRegUpd\n"
"fmr 12,0\n" // arg11 (f12)
"b ppcLoadFloatRegUpd\n"
"fmr 13,0\n" // arg12 (f13)
"b ppcLoadFloatRegUpd\n"
"nop\n"
// all float arguments still go on the stack
"ppcLoadFloatRegUpd:\n"
"stfs 0, 0x04(%r26)\n" // store, as a single float, f0 (current argument) on to the stack argument list
"addi %r23, %r23, 1\n" // a float register eats up a GPR register
"addi %r22, %r22, 1\n" // ...and, of course, a float register
"addi %r29, %r29, 4\n" // move to the next argument in the list
"addi %r26, %r26, 8\n" // move to the next stack slot
"b ppcNextArg\n" // on to the next argument
"nop\n"
// double Float argument
"ppcArgIsDouble:\n"
"lis %r30, ppcLoadDoubleReg@ha\n" // load the base address of the jump table for double registers
"addi %r30, %r30, ppcLoadDoubleReg@l\n"
"mulli %r0, %r22, 8\n" // each slot of the jump table is 8 bytes
"add %r0, %r0, %r30\n" // calculate ppcLoadDoubleReg[numUsedFloatReg]
"lfd 0, 0(%r29)\n" // load the next argument, as a double float, into f0
"cmpwi %r22,13\n" // the first 13 floats must go into float registers also
"bgt ppcLoadDoubleRegUpd\n" // if we're beyond 13, then just put on to the stack
"mtctr %r0\n" // we're under 13, first load our register
"bctr\n" // jump into the jump table
"nop\n"
// jump table for float registers, for the first 13 float arguments
"ppcLoadDoubleReg:\n"
"fmr 1,0\n" // arg0 (f1)
"b ppcLoadDoubleRegUpd\n"
"fmr 2,0\n" // arg1 (f2)
"b ppcLoadDoubleRegUpd\n"
"fmr 3,0\n" // arg2 (f3)
"b ppcLoadDoubleRegUpd\n"
"fmr 4,0\n" // arg3 (f4)
"b ppcLoadDoubleRegUpd\n"
"fmr 5,0\n" // arg4 (f5)
"b ppcLoadDoubleRegUpd\n"
"fmr 6,0\n" // arg5 (f6)
"b ppcLoadDoubleRegUpd\n"
"fmr 7,0\n" // arg6 (f7)
"b ppcLoadDoubleRegUpd\n"
"fmr 8,0\n" // arg7 (f8)
"b ppcLoadDoubleRegUpd\n"
"fmr 9,0\n" // arg8 (f9)
"b ppcLoadDoubleRegUpd\n"
"fmr 10,0\n" // arg9 (f10)
"b ppcLoadDoubleRegUpd\n"
"fmr 11,0\n" // arg10 (f11)
"b ppcLoadDoubleRegUpd\n"
"fmr 12,0\n" // arg11 (f12)
"b ppcLoadDoubleRegUpd\n"
"fmr 13,0\n" // arg12 (f13)
"b ppcLoadDoubleRegUpd\n"
"nop\n"
// all float arguments still go on the stack
"ppcLoadDoubleRegUpd:\n"
"stfd 0,0(%r26)\n" // store f0, as a double, into the argument list on the stack
"addi %r23, %r23, 1\n" // a double float eats up one GPR
"addi %r22, %r22, 1\n" // ...and, of course, a float
"addi %r29, %r29, 8\n" // increment to our next argument we need to process (8 bytes for the 64bit float)
"addi %r26, %r26, 8\n" // increment to the next slot on the argument list on the stack (8 bytes)
"b ppcNextArg\n" // on to the next argument
"nop\n"
// Long (64 bit int) argument
"ppcArgIsLong:\n"
"lis %r30,ppcLoadLongReg@ha\n" // load the address to the jump table for integer64
"addi %r30, %r30, ppcLoadLongReg@l\n"
"mulli %r0, %r23, 8\n" // each item in the jump table is 2 instructions (8 bytes)
"add %r0, %r0, %r30\n" // calculate ppcLoadLongReg[numUsedGPRRegs]
"ld %r30,0(%r29)\n" // load the next argument from the argument list into r30
"cmpwi %r23, 8\n" // we can only load GPR3 through GPR10 (8 registers)
"bgt ppcLoadLongRegUpd\n" // if we're beyond 8 GPR registers, we're in the stack, go there
"mtctr %r0\n" // load the address of our ppcLoadLongReg jump table (we're below 8 GPR registers)
"bctr\n" // load the argument into a GPR register
"nop\n"
// jump table for GPR registers, for the first 8 GPR arguments
"ppcLoadLongReg:\n"
"mr %r3,%r30\n" // arg0 (to r3)
"b ppcLoadLongRegUpd\n"
"mr %r4,%r30\n" // arg1 (to r4)
"b ppcLoadLongRegUpd\n"
"mr %r5,%r30\n" // arg2 (to r5)
"b ppcLoadLongRegUpd\n"
"mr %r6,%r30\n" // arg3 (to r6)
"b ppcLoadLongRegUpd\n"
"mr %r7,%r30\n" // arg4 (to r7)
"b ppcLoadLongRegUpd\n"
"mr %r8,%r30\n" // arg5 (to r8)
"b ppcLoadLongRegUpd\n"
"mr %r9,%r30\n" // arg6 (to r9)
"b ppcLoadLongRegUpd\n"
"mr %r10,%r30\n" // arg7 (to r10)
"b ppcLoadLongRegUpd\n"
// all GPR arguments still go on the stack
"ppcLoadLongRegUpd:\n"
"std %r30,0(%r26)\n" // store the argument into the next slot on the stack's argument list
"addi %r23, %r23, 1\n" // count a used GPR register
"addi %r29, %r29, 8\n" // move to the next argument on the list
"addi %r26, %r26, 8\n" // adjust our argument stack pointer for the next
"b ppcNextArg\n" // next argument
);
static asDWORD GetReturnedFloat(void)
{
asDWORD f;
#ifdef __SNC__
__stfs( __freg(1), 0, (void*)&f);
#else
asm(" stfs 1, %0\n" : "=m"(f));
#endif
return f;
}
static asQWORD GetReturnedDouble(void)
{
asQWORD f;
#ifdef __SNC__
__stfd( __freg(1), 0, (void*)&f);
#else
asm(" stfd 1, %0\n" : "=m"(f));
#endif
return f;
}
// puts the arguments in the correct place in the stack array. See comments above.
static void stackArgs( const asDWORD *args, const asBYTE *argsType, int &numIntArgs, int &numFloatArgs, int &numDoubleArgs, int &numLongArgs )
{
// initialize our offset based on any already placed arguments
int i;
int argWordPos = numIntArgs + numFloatArgs + (numDoubleArgs*2) + (numLongArgs*2);
int typeOffset = numIntArgs + numFloatArgs + numDoubleArgs + numLongArgs;
int typeIndex;
for( i = 0, typeIndex = 0; ; i++, typeIndex++ )
{
// store the type
ppcArgsType[typeOffset++] = argsType[typeIndex];
if( argsType[typeIndex] == ppcENDARG )
break;
switch( argsType[typeIndex] )
{
case ppcFLOATARG:
{
// stow float
ppcArgs[argWordPos] = args[i]; // it's just a bit copy
numFloatArgs++;
argWordPos++; //add one word
}
break;
case ppcDOUBLEARG:
{
// stow double
memcpy( &ppcArgs[argWordPos], &args[i], sizeof(double) ); // we have to do this because of alignment
numDoubleArgs++;
argWordPos+=2; //add two words
i++;//doubles take up 2 argument slots
}
break;
case ppcINTARG:
{
// stow register
ppcArgs[argWordPos] = args[i];
numIntArgs++;
argWordPos++;
}
break;
case ppcLONGARG:
{
// stow long
memcpy( &ppcArgs[argWordPos], &args[i], 8 ); // for alignment purposes, we use memcpy
numLongArgs++;
argWordPos += 2; // add two words
i++; // longs take up 2 argument slots
}
break;
}
}
// close off the argument list (if we have max args we won't close it off until here)
ppcArgsType[typeOffset] = ppcENDARG;
}
static asQWORD CallCDeclFunction(const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory)
{
int baseArgCount = 0;
if( retInMemory )
{
// the first argument is the 'return in memory' pointer
ppcArgs[0] = (asDWORD)retInMemory;
ppcArgsType[0] = ppcINTARG;
ppcArgsType[1] = ppcENDARG;
baseArgCount = 1;
}
// put the arguments in the correct places in the ppcArgs array
int numTotalArgs = baseArgCount;
if( argSize > 0 )
{
int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0, longArgs = 0;
stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs, longArgs );
numTotalArgs = intArgs + floatArgs + doubleArgs + longArgs;
}
else
{
// no arguments, cap the type list
ppcArgsType[baseArgCount] = ppcENDARG;
}
// call the function with the arguments
return ppcFunc64( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func );
}
// This function is identical to CallCDeclFunction, with the only difference that
// the value in the first parameter is the object (unless we are returning in memory)
static asQWORD CallThisCallFunction(const void *obj, const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory )
{
int baseArgCount = 0;
if( retInMemory )
{
// the first argument is the 'return in memory' pointer
ppcArgs[0] = (asDWORD)retInMemory;
ppcArgsType[0] = ppcINTARG;
ppcArgsType[1] = ppcENDARG;
baseArgCount = 1;
}
// the first argument is the 'this' of the object
ppcArgs[baseArgCount] = (asDWORD)obj;
ppcArgsType[baseArgCount++] = ppcINTARG;
ppcArgsType[baseArgCount] = ppcENDARG;
// put the arguments in the correct places in the ppcArgs array
int numTotalArgs = baseArgCount;
if( argSize > 0 )
{
int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0, longArgs = 0;
stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs, longArgs );
numTotalArgs = intArgs + floatArgs + doubleArgs + longArgs;
}
// call the function with the arguments
return ppcFunc64( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func);
}
// This function is identical to CallCDeclFunction, with the only difference that
// the value in the last parameter is the object
// NOTE: on PPC the order for the args is reversed
static asQWORD CallThisCallFunction_objLast(const void *obj, const asDWORD* pArgs, const asBYTE *pArgsType, int argSize, asDWORD func, void *retInMemory)
{
UNUSED_VAR(argSize);
int baseArgCount = 0;
if( retInMemory )
{
// the first argument is the 'return in memory' pointer
ppcArgs[0] = (asDWORD)retInMemory;
ppcArgsType[0] = ppcINTARG;
ppcArgsType[1] = ppcENDARG;
baseArgCount = 1;
}
// stack any of the arguments
int intArgs = baseArgCount, floatArgs = 0, doubleArgs = 0, longArgs = 0;
stackArgs( pArgs, pArgsType, intArgs, floatArgs, doubleArgs, longArgs );
int numTotalArgs = intArgs + floatArgs + doubleArgs;
// can we fit the object in at the end?
if( numTotalArgs < AS_PPC_MAX_ARGS )
{
// put the object pointer at the end
int argPos = intArgs + floatArgs + (doubleArgs * 2) + (longArgs *2);
ppcArgs[argPos] = (asDWORD)obj;
ppcArgsType[numTotalArgs++] = ppcINTARG;
ppcArgsType[numTotalArgs] = ppcENDARG;
}
// call the function with the arguments
return ppcFunc64( ppcArgs, PPC_STACK_SIZE(numTotalArgs), func );
}
// returns true if the given parameter is a 'variable argument'
inline bool IsVariableArgument( asCDataType type )
{
return (type.GetTokenType() == ttQuestion) ? true : false;
}
asQWORD CallSystemFunctionNative(asCContext *context, asCScriptFunction *descr, void *obj, asDWORD *args, void *retPointer, asQWORD &/*retQW2*/, void */*secondObject*/)
{
// TODO: PPC 64 does not yet support THISCALL_OBJFIRST/LAST
// use a working array of types, we'll configure the final one in stackArgs
asBYTE argsType[AS_PPC_MAX_ARGS + 1 + 1 + 1];
memset( argsType, 0, sizeof(argsType));
asCScriptEngine *engine = context->m_engine;
asSSystemFunctionInterface *sysFunc = descr->sysFuncIntf;
int callConv = sysFunc->callConv;
asQWORD retQW = 0;
void *func = (void*)sysFunc->func;
int paramSize = sysFunc->paramSize;
asDWORD *vftable = NULL;
int a;
// convert the parameters that are < 4 bytes from little endian to big endian
int argDwordOffset = 0;
int totalArgumentCount = 0;
for( a = 0; a < (int)descr->parameterTypes.GetLength(); ++a )
{
// get the size for the parameter
int numBytes = descr->parameterTypes[a].GetSizeInMemoryBytes();
++totalArgumentCount;
// is this a variable argument?
// for variable arguments, the typeID will always follow...but we know it is 4 bytes
// so we can skip that parameter automatically.
bool isVarArg = IsVariableArgument( descr->parameterTypes[a] );
if( isVarArg )
{
++totalArgumentCount;
}
if( numBytes >= 4 || descr->parameterTypes[a].IsReference() || descr->parameterTypes[a].IsObjectHandle() )
{
// DWORD or larger parameter --- no flipping needed
argDwordOffset += descr->parameterTypes[a].GetSizeOnStackDWords();
}
else
{
// flip
asASSERT( numBytes == 1 || numBytes == 2 );
switch( numBytes )
{
case 1:
{
volatile asBYTE *bPtr = (asBYTE*)ARG_DW(args[argDwordOffset]);
asBYTE t = bPtr[0];
bPtr[0] = bPtr[3];
bPtr[3] = t;
t = bPtr[1];
bPtr[1] = bPtr[2];
bPtr[2] = t;
}
break;
case 2:
{
volatile asWORD *wPtr = (asWORD*)ARG_DW(args[argDwordOffset]);
asWORD t = wPtr[0];
wPtr[0] = wPtr[1];
wPtr[1] = t;
}
break;
}
++argDwordOffset;
}
if( isVarArg )
{
// skip the implicit typeID
++argDwordOffset;
}
}
asASSERT( totalArgumentCount <= AS_PPC_MAX_ARGS );
// mark all float/double/int arguments
int argIndex = 0;
for( a = 0; a < (int)descr->parameterTypes.GetLength(); ++a, ++argIndex )
{
// get the base type
argsType[argIndex] = ppcINTARG;
if( descr->parameterTypes[a].IsFloatType() && !descr->parameterTypes[a].IsReference() )
{
argsType[argIndex] = ppcFLOATARG;
}
if( descr->parameterTypes[a].IsDoubleType() && !descr->parameterTypes[a].IsReference() )
{
argsType[argIndex] = ppcDOUBLEARG;
}
if( descr->parameterTypes[a].GetSizeOnStackDWords() == 2 && !descr->parameterTypes[a].IsDoubleType() && !descr->parameterTypes[a].IsReference() )
{
argsType[argIndex] = ppcLONGARG;
}
// if it is a variable argument, account for the typeID
if( IsVariableArgument(descr->parameterTypes[a]) )
{
// implicitly add another parameter (AFTER the parameter above), for the TypeID
argsType[++argIndex] = ppcINTARG;
}
}
asASSERT( argIndex == totalArgumentCount );
asDWORD paramBuffer[64];
if( sysFunc->takesObjByVal )
{
paramSize = 0;
int spos = 0;
int dpos = 1;
for( asUINT n = 0; n < descr->parameterTypes.GetLength(); n++ )
{
if( descr->parameterTypes[n].IsObject() && !descr->parameterTypes[n].IsObjectHandle() && !descr->parameterTypes[n].IsReference() &&
!(descr->parameterTypes[n].GetTypeInfo()->flags & asOBJ_APP_ARRAY) )
{
#ifdef COMPLEX_OBJS_PASSED_BY_REF
if( descr->parameterTypes[n].GetTypeInfo()->flags & COMPLEX_MASK )
{
paramBuffer[dpos++] = args[spos++];
++paramSize;
}
else
#endif
{
// NOTE: we may have to do endian flipping here
// Copy the object's memory to the buffer
memcpy( &paramBuffer[dpos], *(void**)(args+spos), descr->parameterTypes[n].GetSizeInMemoryBytes() );
// Delete the original memory
engine->CallFree( *(char**)(args+spos) );
spos++;
dpos += descr->parameterTypes[n].GetSizeInMemoryDWords();
paramSize += descr->parameterTypes[n].GetSizeInMemoryDWords();
}
}
else
{
// Copy the value directly
paramBuffer[dpos++] = args[spos++];
if( descr->parameterTypes[n].GetSizeOnStackDWords() > 1 )
{
paramBuffer[dpos++] = args[spos++];
}
paramSize += descr->parameterTypes[n].GetSizeOnStackDWords();
}
// if this was a variable argument parameter, then account for the implicit typeID
if( IsVariableArgument( descr->parameterTypes[n] ) )
{
// the TypeID is just a DWORD
paramBuffer[dpos++] = args[spos++];
++paramSize;
}
}
// Keep a free location at the beginning
args = &paramBuffer[1];
}
// one last verification to make sure things are how we expect
switch( callConv )
{
case ICC_CDECL:
case ICC_CDECL_RETURNINMEM:
case ICC_STDCALL:
case ICC_STDCALL_RETURNINMEM:
retQW = CallCDeclFunction( args, argsType, paramSize, (asDWORD)func, retPointer );
break;
case ICC_THISCALL:
case ICC_THISCALL_RETURNINMEM:
retQW = CallThisCallFunction(obj, args, argsType, paramSize, (asDWORD)func, retPointer );
break;
case ICC_VIRTUAL_THISCALL:
case ICC_VIRTUAL_THISCALL_RETURNINMEM:
// Get virtual function table from the object pointer
vftable = *(asDWORD**)obj;
retQW = CallThisCallFunction( obj, args, argsType, paramSize, vftable[asDWORD(func)>>2], retPointer );
break;
case ICC_CDECL_OBJLAST:
case ICC_CDECL_OBJLAST_RETURNINMEM:
retQW = CallThisCallFunction_objLast( obj, args, argsType, paramSize, (asDWORD)func, retPointer );
break;
case ICC_CDECL_OBJFIRST:
case ICC_CDECL_OBJFIRST_RETURNINMEM:
retQW = CallThisCallFunction( obj, args, argsType, paramSize, (asDWORD)func, retPointer );
break;
default:
context->SetInternalException(TXT_INVALID_CALLING_CONVENTION);
}
if( sysFunc->hostReturnFloat )
{
// If the return is a float value we need to get the value from the FP register
if( sysFunc->hostReturnSize == 1 )
*(asDWORD*)&retQW = GetReturnedFloat();
else
retQW = GetReturnedDouble();
}
else if( sysFunc->hostReturnSize == 1 )
{
// Move the bits to the higher value to compensate for the adjustment that the caller does
retQW <<= 32;
}
return retQW;
}
END_AS_NAMESPACE
#endif // AS_PTR_SIZE == 2
#endif // AS_PPC_64
#endif // AS_MAX_PORTABILITY